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| Information about the course

= Ph.D. Manuel Roveri
= Email: manuel.roveri@polimi.it
= Phone: +39-2399-3590

= Personal Web Page:

- http://roveri.faculty.polimi.it/
= Course Web Page:

- http://roveri.faculty.polimi.it/teaching/intelligent-
embedded-systems
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Embedded and Cyber-physical Systems: ——
the application scenarios

E-health

O Smart Home/Building

Smart Cities
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N Applications, Systems and World

Applications

Physical World
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The Challenges
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BILLIONS OF DEVICES
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The ever-growing number of devices
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An example of Intelligent Embedded Systems:
N Rock collapse and landslide forecasting
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Complex systems in remote and harsh environments
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... Faults, Errors and Changes in the
N Environment

Applications

Faults, Errors,
Uncertainty,
Malfunctionings
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Some examples ...
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Bio | Manuel Roveri,... Corriere della Sera
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Just How Accurate Are Fitbits? The Jury Is Out

By MIKE McPHATE MAY 25, 2016

Fitbit Charge HR Tony Cenicola/The New York Times

Many users of activity trackers have
always harbored suspicions: How
accurate are these things?

A handful of tests by journalists and
researchers have tried to bring
clarity to the issue. Results, alas,
have been mixed.

The latest study, released by the
plaintiffs in a class-action lawsuit
against Fitbit, found that the pulse-
monitoring technology used in the
company’s wrist-bound Surge and
Charge devices was “highly

inaccurate during elevated physical activity.”

Researchers from California State Polytechnic University, Pomona, had
43 subjects wear the devices as they ran, jogged and jumped rope,

among other activities, and then compared the readings with those of

an electrocardiogram.

Spectrum: Technoleg...

Just How Accurate A... ar

SUBSCRIBE NOW m o

Xplore Full-Text PDF:

YOUR ONE-STOP SHOP
FOR EXCITING NEW OFFERS

SHOP NOW »
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FINDING ONE FACE
INAMILLION

A new benchmark test shows that even Google’s facial
recognition algorithm is far from perfect

Helen of Troy may have had the

face that launched a thousand
ships, but even the best facial recogni-
tion algorithms might have had trouble
finding her in a crowd of a million strang-
ers. The first publicbenchmark test based
on 1 million faces has shown how facial
recognition algorithms from Google and
other research groups around the world
still fall well short of perfection.

Facial recognition algorithms that
had previously performed with more
than 95 percent accuracy on a popular
benchmark test involving 13,000 faces
saw significant drops in accuracy when
taking on the new MegaFace Challenge.
The best performer, Google’s FaceNet
algorithm, dropped from near-perfect
accuracy on the five-figure data set to
75 percent on the million-face test. Other
top algorithms dropped from above
90 percent to below 60 percent. Some
algorithms made the proper identifica-
tion as seldom as 35 percent of the time.

“MegaFace’s key idea s that algorithms
should be evaluated at large scale,” says
Ira Kemelmacher-Shlizerman, an assis-
tant professor of computer science at the
University of Washington, in Seattle, and

the project’s principal investigator. “And
we make anumber of discoveries that are
only possible when evaluating at scale.”

cognition algorithms inevitably f3
ch challenges in the real world. Peo
reasingly trust these algorithms to ¢
ctly identify them in security verifi
bn scenarios, and law enforcement
50 rely on facial recognition to pick
cts out of the hundreds of thousand

now has been the Labeled Faces in the
Wild (LFW) test created in 2007. LFW
includes 13,000 images of just 5,000
people. Many facial recognition algo-
rithms have been fine-tuned to the point
that they scored near-perfect accuracy
when picking through the LFW images.
Most researchers say that new bench-
mark challenges have been long overdue.
“The big disadvantage is that [the field] is
saturated—that is, there are many, many
algorithms that perform above 95 percent
on LFW,” Kemelmacher-Shlizerman says.
“This gives the impression that face rec-
ognition is solved and working perfectly.”

With that in mind, University of Wash-
ingtonresearchers raised the bar by cre-

1 million Flickr images of 690,000
unique faces that are publicly available
under a Creative Commons license.

The MegaFace Challenge forces facial
recognition algorithms to do verifica-
tion and identification, two separate
but related tasks. Verification involves
trying to correctly determine whether
two faces presented to the facial recog-
nition algorithm belong to the same per-
son. Identification involves trying to find
a matching photo of the same person
among a million “distractor” faces. Ini-
tial results on algorithms developed by
Google and four other research groups
were presented at the IEEE Conference
on Computer Vision and Pattern Recog-
nition on 30 June. (One of MegaFace’s
developers also heads a computer vision
team at Google’s Seattle office.)

The results presented were a mix of
the intriguing and the expected. Nobody
was surprised that the algorithms’ per-
formances suffered as the nu
distractor faces increased-And the fact
that algorith trouble identifying
the person at different ages was a
nown problem. However, the results
also showed that algorithms trained on
relatively small data sets can compete
with those trained on very large ones,
such as Google’s FaceNet, which was
trained on more than 500 million pho-
tos of 10 million people.

For example, the FaceN algorithm from
Russia’s N-TechLab performed well on
certain tasks in comparison with FaceNet,
despite having trained on 18 million pho-
tos 0f 200,000 people. The SIAT MMLab
algorithm, created by a Chinese team
under the leadership of Yu Qiao, a profes-
sor with Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences,
also performed well on certain tasks.

Nevertheless, FaceNet has so far per-
formed the best overall. It delivered the
most consistent performance across
all testing.

SPECTRUM.IEEE.ORG | MORTH AMERICAH | RUG- I

The huge drops in accuracy when scan-
ning a million faces matter because facial
recognition algorithms inevitably face
such challenges in the real world. People
increasingly trust these algorithms to cor-
rectly identify them in security verifica-
tion scenarios, and law enforcement may
alsorely on facial recognition to pick sus-
pects out of the hundreds of thousands of
faces captured on surveillance cameras.
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J The effects on the considered applications
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How to deal with that?
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N| Intelligence for embedded systems
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I
N| Intelligence for embedded systems
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N Intelligent Objects/Devices
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== | Continuously Learning Complex Behaviors
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J Continuously Learning Complex Behaviors
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N Designing Intelligent Embedded Systems: from centralized

‘ Scalability server |[Application
& Responsiveness Cloud |GV ESIENENE

‘ Dumb units

POLITECNICO DI MILANO



N DeS|gning Intelligent Embedded Systems :
...to distributed intelligent systems
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Capturing the relationships among the sensors ...
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N Distributing Intelligence among the Units
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Intelligence or “is this an Al course?”

= The adjective intelligent, when associated with a sensing
system, can be inflected differently, depending on the
reference community

conc bramstormmgi;-

= As such, it may imply:
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| B
| The theoretical framework: three milestones

= All the above definitions, explicitly or implicitly, rely on a
computational paradigm or application which receives
and processes incoming acquisitions to accomplish
the requested task.

= Under this framework, the literature generally assumes
that sensors are fault free, that data are stationary,
time invariant, available and ready to be used and that
the application is capable of providing outputs and taking
decisions.

= Unfortunately, assumptions about the quality and
validity of data are so implicitly taken as valid by
scholars that, most of the time, even their existence
as assumptions is forgotten.
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| How is the course organized?

= The course presents the intelligent-based
methodological and technical aspects making
embedded systems and embedded applications able to
deal with uncertainties and evolving environments.
= The course addresses the following aspects:
- From metrology to digital data
- Uncertainty, information and learning mechanisms

- Emotional cognitive mechanisms for embedded
systems

- Adaptive mechanisms in embedded systems
- Learning in nonstationary and evolving environments
- Cognitive Fault Detection and Diagnosis
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Schedule of the course

Lesson Schedule Room Time

1) 23/01/17 Seminari (DEIB) 13.15-16.15
2) 01/02/17 Seminari (DEIB) 13.15-16.15
3) 03/02/17 Seminari (DEIB) 13.15-16.15
4) 08/02/17 Seminari (DEIB) 13.15-16.15
5) 13/02/17 Seminari (DEIB) 13.15-16.15
6) 22/02/17 Conferenze (DEIB) 10.15-13.15
7) 27/02/17 Seminari (DEIB) 13.15-16.15
8) 03/03/17 Seminari (DEIB) 09.15-13.15
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| TEACHING MATERIALS

= Slides provided by the lecturer

= Reference book:

- “Intelligence for Embedded Systems: A Methodological
Approach’,
C. Alippi, Springer, 2014

= Selected papers
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| Software and Code

= MathWorks —- MATLAB
- Download from the POLIMI web site

- Servizi On Line -> Servizi ICT -> Software Download ->
Matlab

= STMicroelectronics IDE for embedded programming
in C language

= Codes and Examples available on the course web page

- I POLITECNICO DI MILANO




I
| LEARNING EVALUATION

* Project/Thesis
a) Analysis of the literature
b) Design of a solution

c) Development of the designed solution

)
d) Experimental Analysis

= Different combinations for a, b, c, d but a+b+c+d= 100%
= Different workloads for Ph.D. and Master Students

= Up to two people

=  Knowledge of Matlab and C/C++

= Topics available at the end of the course
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