From metrology to digital data

Intelligence for Embedded Systems
Ph. D. and Master Course
Manuel Roveri
Politecnico di Milano, DEIB, Italy
Measure and measurements

- The operation of measuring an unknown quantity x_0 can be modeled as taking an instance - or measurement - x_i at time i with an ad-hoc sensor S

- Even though S has been suitably designed and realized, the physical elements composing it are far from being ideal and introduce sources of uncertainty in the measurement process

- As a consequence, x_i represents only an estimate of x_0

This is a crucial point for the application processing the data
Environmental monitoring: rock collapse forecasting
In addition:

Many temperature sensors

Strain gauges

High precision inclinometers

MEMS accelerometer

Pluviometers

Mid precision inclinometers

Flow meters

Environmental monitoring: rock collapse forecasting
Is x_i an accurate and reliable estimate of x_0?

Despite the formalization of the measurement process, several major aspects need to be investigated and addressed before claiming that a generic measurement x_i is an accurate and reliable estimate of x_0.

- For instance:
 - the sensor could be noisy;
 - the sensor or the processing electronics could be faulty;
 - the temperature could affect the sensor inducing bias in the measurements;

How can we say that x_i is an accurate and reliable estimate of x_0?
Some properties...

- We would require subsequent measurements x_i to be somehow centered around x_o: an accurate sensor does not introduce some bias error (*accuracy* property).

- Each measurement represents only an estimate of the true unknown value, the *discrepancy* between the two - or error- depends on the quality of the sensor and the *working conditions* under which the measure was taken (*precision* property).

- We hope that the sensor is able to provide a long sequence of correct digits of the number associated with the acquired data (*resolution* property).
The measurement chain

The functional chain representing the most common model describing a modern electronic sensor
The transducer: from x_o to x_e
The transducer

- A transducer is a device transforming a form of energy into another, here converting a physical quantity x_o into an electric or electric-related quantity x_e

- *E.g., a force transducer*
Sensors can be active or passive in their transduction mechanism: an active sensor requires energy to carry out the operation and needs to be powered, whereas a passive sensor does not.

- Required Energy to measure x_e

- Another relevant information is related to the time requested to produce a stable measurement. Such a time depends, for instance, on the dynamics of the transduction mechanisms or the time needed to complete the self calibration/compensation phase introduced to improve the quality of the sensor outcome.

- Required Time to measure x_e
The conditioning circuit: from x_e to x_c
The conditioning circuit

- The aim of the conditioning circuit is to provide an enhanced electrical quantity x_c of x_e.
- Why do I need a conditioning circuit?
 - the sensitivity of the sensor is amplified,
 - the effect of the noise mitigated,
 - the interval of definition of the electrical entity adapted to the requirements of the subsequent analog to digital converter.
The conditioning circuit (2)

- What is the conditioning circuit?
 - It is an analog circuit juxtaposed to the transducer module

- How does it work?
 - at first it usually amplifies x_e
 - then, it filters its output (e.g., with a low pass filter) to improve the signal to noise ratio and the quality of the signal x_c to be passed to the analog to digital conversion stage.
The conditioning circuit might also encompass a module designed to:

- help compensating parasitic thermal effects, which influence the readout value
- introduce corrections to linearize the relationship between the input x_o and x_c.

Effect of the temperature on a strain gauge
ADC: from x_c to x_b (binary)
The analog to digital converter

- The input to the module is the analog electrical signal x_c and the output is a codeword x_b represented in a binary format.

- There is a large variety of architectures for ADCs, all of them having in common:
 - the sampling rate
 - the resolution (the number of bits of the codeword)

- The conversion introduces an error associated with the quantization level, whose statistical properties may depend on the specific ADC architecture.
During the conversion phase, the input x_c must be kept constant, operation carried out by the "sample and hold" mechanism (the analog value is sampled and kept to avoid dangerous fluctuations in the input signal).
Sampling rates and resolution

Resolution (3 bits per sample)

Sampling Period
(Sampling Frequency, Spectrum Analysis, Maximum Frequency, Nyquist theorem)
Data Estimation: from x_b to x_i
The data estimation module (for smart sensors)

- The final module (when present) introduces further corrections on x_b by operating at the digital level.
- In particular, it generally carries out a further calibration phase aiming at improving the quality of the final data x_i.
- When a microprocessor is present to address the data estimation module needs, the sensor is defined to be a "smart sensor".
- The microprocessor can carry out a more sophisticated processing relying on simple but effective algorithms, generally aimed at introducing corrections and structural error compensations.
For instance, **a thermal sensor can be onboard, in addition to the principal sensor**, to compensate the thermal effect on the principal sensor readout.

The microprocessor carries out the thermal compensation by reading the temperature value, comparing it with the rated working temperature defined at design time and introducing a correction on the readout value.
The data estimation module: averaging

- When the dynamics of the signal are known not to change too quickly (compared with the time requested by the ADC to convert a value) or the signal is constant, the microcontroller can instruct the sensor to take a burst of \(n \) readings over time.

- The outcome data sequence \(x_{b,j}, j = 1, \ldots, n \) can be used to provide an improved final estimate of \(x_0 \) by averaging

\[
x_i = \frac{1}{n} \sum_{j=1}^{n} x_{b,j}.
\]
Now it’s time for a quick brainstorming…

Please, try to answer the following question:

how can all these uncertainties in the measurement process affect the application/theory/technique I’m studying or considering?
Abstracting the measurement chain ...

Create a model of the measurement process ...
Modeling the measurement process: the additive or “signal plus noise” model

- The whole measurement process can now be seen as a black box, suitably described by an input-output model whose simplest, but generally effective form, is

\[x = x_0 + \eta \]

where

\[\eta = f_\eta (0, \sigma^2_\eta) \]

independent and identically distributed (i.i.d.) random variable

The model implicitly assumes that the noise does not depend on the working point \(x_0 \)
Another common model for the sensor is the multiplicative one where

\[x = x_o + \eta x_o = x_o (1 + \eta) \]

In this way, the noise depends on the working point \(x_o \). In absolute terms, the impact of the noise on the signal is \(x_o \eta \), but the relative contribution is \(\eta \) and does not depend on \(x_o \).
Now we have all the theoretical tools to define

1) Accuracy
2) Precision
3) Resolution

These are crucial properties to assess the quality of a measurement process.
1) Accuracy

- We say that a measure is accurate when the expectation taken w.r.t. the noise satisfies

\[E[x] = x_o \]

- In order to have an accurate measurement, the instrument and the measurement process have not to introduce any bias contribution

\[x = x_o + k + \eta \]

\[E[x] = x_o + k \]
Accuracy: how to remove the bias?

- **When the measurement process is biased** we need to subtract the expected value (or its estimate) from the read value.

- However, since k is unknown, we must rely on a reference value to estimate it.

- E.g., if we are able to drive the sensor to a controlled state where the expected value is known, say x_o, then

$$k = E[x] - x_o$$

SENSOR CALIBRATION
Example: Sensor Calibration

- We bought a **low cost temperature sensor** and are **not sure about its accuracy**. We wish to quantify the potential bias value so as to zero center subsequent measurements.

- To this purpose, **we drive our sensor to operate at a known reference value** x_o and wait until the dynamics effect associated with the change of state vanishes.

- In the steady state the sensor shares the same temperature as the environment:

 $\hat{k} = \frac{1}{n} \sum_{i=1}^{n} x_i - x_o$

- We iterate the process for different x_o values to **get a calibration curve**
2) Precision

- Under the signal plus noise framework, each taken measurement is seen as a realization of a random variable.

- Measurements will then be spread around a given value \((x_o\) in the case of accurate sensors, \(x_o + k\) in case of an inaccurate one), with the standard deviation defining a scattering level index.

- Precision is a measure of such scattering and is function of the standard deviation of the noise.

Given a confidence level \(\delta\), precision defines an interval \(I\) for \(x_o\) within which all values are indistinguishable due to the presence of uncertainty \(\eta\): all values \(x \in I\) are equivalent estimates of \(x_o\).
An example of precision: Gaussian Distribution

- Gaussian distribution $f_\eta(0,\sigma_\eta^2)$. The Gaussian hypothesis holds in many off-the-shelf integrated sensors.

- Under the Gaussian assumption and a confidence level δ, we have that a realization x_i of x_o lies in
 - $I = [x_o - 2\sigma_\eta, x_o + 2\sigma_\eta]$ with probability 0.95
 - $I = [x_o - 3\sigma_\eta, x_o + 3\sigma_\eta]$ with probability 0.997

- The interval defines the precision (interval) of the measure at a given confidence δ.

- For example, the precision of the sensor (sensor tolerance) could be defined as $3\sigma_\eta$, so that $x = x_o \pm 3\sigma_\eta$.
When \(f_\eta \) is unknown, we cannot use the strong results valid for the Gaussian distribution.

In this case, we need to define an interval \(I \) function of \(\delta \) within a pdf-free framework.

The issue can be solved by invoking the Tchebychev theorem which, given a positive \(\lambda \) value and a confidence \(\delta \), grants the inequality

\[
\Pr \left(|x_\circ - x| \leq \lambda \sigma_\eta \right) \geq 1 - \frac{1}{\lambda^2} = \delta
\]

By selecting a wished confidence \(\delta \), e.g., \(\delta = 0.95 \), we select the consequent value \(\lambda \).

The precision interval \(I \) is now \(x = x_\circ \pm \lambda \sigma_\eta \).
The lack of priors about the distribution is a cost we pay in terms of a larger tolerance interval.

<table>
<thead>
<tr>
<th>Distribution</th>
<th>$\lambda = 1$</th>
<th>$\lambda = 2$</th>
<th>$\lambda = 3$</th>
<th>$\lambda = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian</td>
<td>0.682</td>
<td>0.954</td>
<td>0.997</td>
<td>1</td>
</tr>
<tr>
<td>Distribution-free</td>
<td>n.a.</td>
<td>0.750</td>
<td>0.889</td>
<td>0.938</td>
</tr>
</tbody>
</table>

By having a priori information about the noise distribution, the precision interval can be easily characterized with a better precision.
3) Resolution

- Whereas precision is a property associated with a measure, **resolution** is associated with an instrument/sensor and **represents the smallest value that can be perceived and differentiated by others** given a confidence level.

- **Example**: if our instrument has a resolution of 1g, we will not be able to measure values of 1mg due to the limits of the instrument: the scale will make sense in steps of 1g (and all values in such interval will be equivalent and indistinguishable).

- But …
Does a high resolution sensor imply high precision or accuracy?

No, having a high resolution neither implies that the measure is accurate nor precise.
A real sensor example: a temperature sensor for aquatic monitoring

- The resolution of the instrument is high, but the impact of the noise on the readout value is high as well.
- The sensor provides values within a $[-4^\circ C,36^\circ C]$ interval with an additive error model influencing up to ± 0.3.
- We immediately derive that $\sigma_\eta = 0.1$ since the sensor is ruled by a Gaussian distribution from data-sheet information and we consider $\lambda = 3$.

<table>
<thead>
<tr>
<th>Features</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>-4° to $36^\circ C$</td>
</tr>
<tr>
<td>Resolution</td>
<td>$0.01^\circ C$</td>
</tr>
<tr>
<td>Accuracy</td>
<td>$\pm 0.3^\circ C$</td>
</tr>
<tr>
<td>Response time</td>
<td>$\leq 2s$</td>
</tr>
</tbody>
</table>
Designing an embedded application for real-world applications requires to:

identify the number of significant digits available within the given codeword

or (in other words)

if the output of the data estimation module x_i is represented by means of n bits, uncertainty is affecting the readout, how many bits p are relevant out of the n?
A deterministic representation: noise-free data

- The case covers the situation where acquired data are error-free and belong to the closed interval $[a, b]$.
- If n bits are made available to represent the data and no noise affects them, then each of the 2^n available codewords are worth to be used.
- Δx between two subsequent data is $\Delta x = \frac{b - a}{2^n - 1}$.
- In this way the 2^n code words are assigned as $x_1 = a$, $x_2 = a + \Delta x$, \ldots, $x_{2^n} = b$.
- Given a value x_o, the maximum representation error is $\Delta x/2$ and the average error is zero. If values are uniformly distributed in the interval $[x_o - \Delta x/2, x_o + \Delta x/2]$, then the variance of the error representation is $\Delta x^2/12$.
A stochastic representation: noise-affected data

- As we have seen in the measurement chain, data acquired from a sensor are noise-affected.

- Obviously, we are not interested in spending bits to represent the noise when writing a number.

- Precision introduces a constraint on the indistinguishable values we can acquire:

 two data are distinguishable and deserve distinct codewords only if their distance is above the precision interval \(I \) which, as we have seen, depends on a predefined confidence level \(\delta \).
A stochastic representation of noise-affected data

- The number of independent values can be written as the ratio between the domain interval of the data and the value \(I_m = 2\lambda \sigma_\eta \) of the probabilistic indistinguishability interval (\(\sigma_\eta \) being the uncertainty standard deviation associated with the measurement process)

- The number of independent points \(I_p \) is

\[
I_p = \frac{b - a}{2\lambda \sigma_\eta} + 1
\]

- The number of significant bits is

\[
p = \left\lfloor \log_2 (I_p) \right\rfloor
\]
Example: the impact of a normally distributed noise

- Figure shows how values around $x_o = 6$ are affected by noise under the assumption that the noise is normal (zero mean, unitary standard deviation and $\lambda = 3$).

 - Codewords are $x_o = 0, 6, 12, 18$ but the error distribution is shown only in correspondence of codewords $x_o = 6$ and $x_o = 12$.
 - Given the tails of the distribution, we might erroneously assign with probability $1 - \delta$ a wrong codeword to a given value.
Consider now the case where the signal is not bounded in deterministic terms.

Measurements are modeled as instances drawn from a stationary -possibly unknown- pdf.

A probabilistic interval can be identified for x_o whose probabilistic extremes are associated with $\lambda_x \sigma_x$, being σ_x the standard deviation of the signal and λ_x the term modulating the width of the interval, chosen to grab confidence level δ.
In this case, the number of independent values I_p depends on the interval between two distinct codewords, which are distinguishable according to δ

$$I_p = \frac{2 \lambda_x \sigma_x}{2 \lambda \sigma_\eta} + 1$$

By considering the same λs both for the noise and signal we define the Signal to Noise ratio (SNR)

$$SNR = \log \frac{\sigma_x}{\sigma_\eta}$$
The signal to noise ratio (SNR) – cont.

- **The SNR is pdf-free** and applies to any distribution thanks to the Tchebychev inequality, provided that the same λ value is considered.

- **The number of relevant bits p** of the binary codeword finally becomes

$$p = \left\lfloor \log_2 \left(\frac{\sigma_x}{\sigma_\eta} + 1 \right) \right\rfloor$$

- If $p \geq n$, all bits present in x_i are statistically relevant;
 otherwise, only p out of n are relevant and $n - p$ are associated with noise.
Let’s play with MATLAB

- Download the examples related to Lecture 2
- In the ZIP file:
 - Example 2_A.m
 - About the accuracy and the calibration of a sensor
 - Example 2_B.m
 - About the precision and Tchebychev inequality
 - Example 2_C.m
 - About the noise-free and the noise-affected representation of data