
Uncertainty, Information and
Learning Mechanisms

(Part 2)

A
dv

an
ce

d
R

es
ea

rc
h Intelligent

Embedded
Systems

Intelligence for Embedded Systems
Ph. D. and Master Course

Manuel Roveri
Politecnico di Milano, DEIB, Italy

Uncertaintanty and Learning

§ The real world is prone to uncertainty
§ At different level of the data analysis process

• Acquiring data

• Representing information

• Processing the information
• Learning mechanisms

§ Two questions:
ü Why do we need learning mechanisms?

ü Which are basics of supervised statistical learning?

Part 1 of
this lecture

First lecture

A “toy” example
Physical model ?
I did not completed
my PhD in Physics
yet

???
A very tough
classification
problem

Data-­driven might
be a good solution
(brute-­force as well)

Pass

NO Pass

NO Pass

Pass
Pass

What is the learning goal here?

Data-­processing and applications

P
Data	
 generating	

process

Application
Model	

of	
 the	

system

Not rarely we wish to generate a functional
dependency among sensor datastreams (model)
to solve a problem. Some examples
§ Design a Classifier

• e.g., optical character recognition, face recognition,
explosive detection, quality analysis in the
manufactoring industry…

§ Construct a functional dependency
(function regression)
• e.g., function reconstruction, data regularization,
predictive modeling…

System modeling

§ In some cases the physical equations describing
the process are available but some parameters
need to be determined

§ In others, we do not know the equations ruling
the system

§ If the considered model is linear we speak about
system identification, when not linear about
learning

System modeling

Learning the system model

P
Data	
 generating	

process

(x,y)

Estimate	

a	
 model

Application

iSense D1.1: Specification of System Characteristics

Figure 12: The general MIMO system model

In a networked –possibly controlled– environment the system model can describe relationships
within a sensor-actuator augmented unit, at a cluster of units level or at the whole network level;
the particular envisaged P depends then on the application needs.

In the following we consider a general MIMO system description. As a consequence, it also implic-
itly addresses multiple-input single-output (MISO) and single-input single-output (SISO) scenarios.
We recall that continuous-time dynamic systems can be brought back to a discrete-time representa-
tion with discretization techniques such as the (explicit) forward Euler or the (implicit) backward
Euler methods.

The considered MIMO discrete-time system model can be described by means of the canonical
form as the system of equations (similar to the ones presented in (26)-(27))

x(k + 1) = f(x(k), u(k)) + η(k), (46)
y(k) = h(x(k), u(k)) + d(k) (47)

where x ∈ Rn is the state vector, y ∈ R� is the output vector, u ∈ Rm is the input vector, which
may consist of some controlled inputs as well as some uncontrolled inputs which however can be
measured, η is the i.i.d. random variable describing the uncertainty affecting the state vector; d is
an independent and identically distributed (i.i.d.) random variable describing the noise affecting
the output vector. The functions f and h are, in general, non-linear functions and unlike the models
presented in (26)-(27) they are assumed unknown.

The output equation (47) models the relationship among the output, the state and the input
variables, while the state equation (46), models the evolution of the state variables over time with
respect to the inputs and states.

The discrete-time model presented above is quite general and allows the modeling of a wide range
of applications. In the following, we specialize the system model to cover interesting application
cases, namely those where P can be described within a regression framework, the case where the
output variables coincide with the state variables (input-output description) and the general case
where the process can be specified with a state space representation.

2.2.1 Regression models

When P does not have internal states (i.e., the system has no dynamics), the output variables
depend only on the input variables at time k and, hence, (47) can be rewritten as

y(k) = h(u(k)) + d(k) (48)

23

iSense D1.1: Specification of System Characteristics

If the relationship between y(k) and u(k) is linear, the system model simplifies to

y(k) = Du(k) + d(k) (49)

where D is an �×m matrix.

2.2.2 Input-output models

Of particular interest is the case where P can be described by the input-output representation, here
considered in the SISO scenario,

y(k) = h(y(k − 1), y(k − 2), . . . , y(k − k

y

), u(k), u(k − 1), . . . , u(k − k

u

)) + d(k) (50)

and characterized by a finite time lag dependency. Linear input-output models represent a further
specific subcase of the above where the relationship between the output and the input variables is
linear. In such a case and for the MIMO scenario, the system model assumes the general canonical
form [31]:

A(z)y(k) =
mX

i=1

B

i

(z)
F

i

(z)
u

i

(k) +
C(z)
D(z)

d(k) (51)

where z is the time-shift operator, A(z), B

i

(z), C(z), D(z), and F

i

(z) represent the z-transform
functions and, u

i

is the i-th input.
From the canonical form we can specify some linear input-output models for the system which

are widely-used in system identification, e.g., the AR, ARX and OE models. If we have a priori
information about the nature of the system then we can exploit such an information to build up an
effective model. An interesting positive consequence is that, after having identified the system with
the suitable model, the bias component of the residual error vanishes and the same model satisfies
the i.i.d hypothesis, which is useful for the subsequent statistical change detection phase.

AR system model: When the system can be expressed as a linear autoregressive (AR) model, Eq.
(51) simplifies to a linear relationship between the output variable y(k) at time k and its previous
values. For instance, in the case of a scalar single output of order k

y

, the system can be expressed
as

A(z)y(k) = d(k), (52)

which can be written as:

y(k) =
k

yX

i=1

a

i

y(k − i) + d(k). (53)

ARX model: When the process can be described as an autoregressive model with an exogenous
input (ARX), the output y(k) is function of the past values of the output variables and inputs. In
case of a single-input single-output (SISO) ARX models, Eq. (51) becomes

A(z)y(k) = B(z)u(k) + d(k) (54)

24

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

as in single vs. ensemble, sequential vs. batch, passive vs.
active.

We believe that the classification active vs. passive is the
most appropriate one since it refers to the way classifiers
adapt in response to concept drift. In the following, we mainly
focus on active classifiers [2]–[5], [8]–[20], since the proposed
approach falls in this category. Readers interested in passive
classifiers can refer to [1], [6].

Active classifiers rely on triggering mechanisms detecting
when the classifier is no more aligned with the current concept,
generally by means of a CDT.

The adaptation phase is then activated as soon as a change
is detected, and moves the learning machine into a new opera-
tional state. On the contrary, in passive solutions, the classifier
undergoes a continuous update every time new supervised
samples are made available. These latter solutions generally
rely on an ensemble of classifiers with adaptation confined in
the update of the weights of the fusion/aggregation rule and
in the creation/removal of classifiers composing the ensemble.

[19] suggests an active classifier that monitors nonstation-
arity by inspecting variations in the mean value of a sliding
window opened over raw data. Differently, [18] takes decisions
by inspecting the normalized Kolmogorov-Smirnov distance
between the cumulative density functions estimated from the
training samples and a window of the most recent ones.

[14]–[17], [20] present triggering mechanisms based on
the classification error. In more detail, [14], [16], [20] detect a
change when the classification error exceeds a fixed threshold
(which is tuned according to the sample standard deviation
of the associated Bernoulli distribution). [17] suggests an ad-
hoc statistical test on the proportion of incorrectly classified
samples for comparing two different partitions of supervised
couples. [15] introduces an active classifier for concept drift
that relies on a sequential CDT (the Bernoulli exponential
moving average chart) to assess the stationarity of the clas-
sification error over time.

The JIT classifiers [2] and [3], introduced the inspection
of raw data pdf without relying on supervised labels, as
these could be seldom available. More specifically, preliminary
versions of JIT classifiers [3], [13] rely on the CI-CUSUM
CDT [2], whereas most recent solutions have enforced the
ICI-based CDT [4] as a core technique. In [10] a specific
solution for gradual concept drift is presented. In some cases,
concept drift cannot be detected by solely inspecting the
distribution of raw data, e.g., when the concept drift affects the
class function without modifying the distribution of unlabeled
observations. The same problem arises when observations
contain qualitative components, a situation hardly manageable
with a CDT. To this purpose, an extension of the basic JIT
classifier to detect drifts affecting the average classification
error has been presented in [5]. A particularly convenient
solution consists in simultaneously monitoring the pdf of the
raw data and the classification error, by combining different
CDTs.

III. PROBLEM STATEMENT

Let us consider a classification problem where sequential
couples (xt, yt) are generated according to an unknown pdf. In

particular, let xt 2 Rd be the observation at time t, generated
by an unknown process X , and let yt be its class label,
belonging to a finite set ⇤. The probability of observations
at time t can be expressed as

p(x|t) =
X

y2⇤

p(y|t)p(x|y, t), such that
X

y2⇤

p(y|t) = 1,

(1)
where p(y|t) > 0, is the probability of receiving a sample
of class y 2 ⇤, while p(x|y, t) is the conditional probability
distribution of class y at time t. Both the probabilities of
classes and the conditional probabilities are unknown and,
possibly, time variant (whenever a concept drift occurs).

The training sequence is composed of the first T0 observa-
tions, assumed to be generated in stationary conditions, i.e.,
8y 2 ⇤, p(y|t) and p(x|y, t) do not change in t 2 [0, T0]. No
assumptions are made on how often supervised pairs (xt, yt)
are provided during the operational life (t > T0), as these
could be received following a regular time-pattern scheme
(e.g., one supervised sample out of m) or asynchronously.

IV. JIT CLASSIFIERS FOR RECURRENT CONCEPTS:
THE GENERAL FORMULATION

The key elements composing a JIT classifier are the set
of concept representations C = {C1, . . . , CN} and the set of
operators {U ,⌥,D, E ,K} designed to handle such represen-
tations.

The i-th concept representation is defined as the triplet
Ci =

�

Zi, Fi, Di

�

where Zi is a sequence of supervised
pairs, Fi is a sequence of features characterizing the i-th
concept (to be used to assess the equivalence between two
concept representations), and Di is a sequence of features
used by the CDTs to detect a drift in the i-th concept. Not
rarely, Di contains also the same features of Fi. Examples of
Di are the cumulative statistics in CUSUM-like CDT [21];
examples of Fi are the sample statistics from non-overlapping
subsequences of observations.

The operators are defined as follows
• the update operator U(Ci, R) ! Ci. The operator U

receives concept Ci and a sequence of supervised or un-
supervised observations R. The operator U modifies the
concept representation Ci by appending recent supervised
samples Zi or features extracted from R to Fi.

• the split operator ⌥ (Ci) ! (Cj , Ck). The operator ⌥
divides a concept representation Ci into two disjoint
concept representations Cj and Ck. Elements that cannot
be safely associated either to Cj or Ck are discarded.

• the concept-drift detection operator D(Ci) ! {0, 1}: D
sequentially assesses the stationarity of concept Ci by
monitoring features in Di. When D(Ci) = 0 all observa-
tions yielding Ci are generated from the same concept,
i.e., “no concept drift” has occurred. When D(Ci) = 1,
the representation Ci has not been obtained from a single
concept, i.e., “concept drift has been detected”.

• the equivalence operator E(Ci, Cj) ! {0, 1}. E checks
if Ci and Cj are equivalent: E(Ci, Cj) = 1 means that
Ci and Cj are two representations coming from the same

We will come back to the learning mechanism later

• A real example: classifying microacoustic
bursts

In addition:
Many temperature
sensors

Strain gauges

High precision
inclinometers

MEMS
accelerometer

Pluviometers

Mid precision
inclinometers

Flow meters

The Torrioni di Rialba Monitoring system

§ We wish to
automatically identify
microacoustic bursts
to reduce the false
alarms (data trigger)

§ The application
requires to design a
classifier assigning a
relevant/not relevant
label to bursts

Designing a Classifier

§ Burst alignment: bursts need to
be aligned to provide a common
comparison

1. Pre-­
Processing

§ Bursts are then processed to
extract scalar features

§ Bursts are automatically
classified

2. Feature
Extraction

4. Use the
classifier

3. Design the
Classifier

§ Design the classifier from
available bursts

Microacoustic Bursts

§ Each burst is projected onto an adaptive orthonormal three-­axis
system estimated with a Principal Component Analysis (PCA)

Pre-­processing

§ Only the principal and the leat signifcant components are further processed

Feature Extraction

Time Domain Features
§ Mean (before PCA)

§ PCA eigenvalue
§ Max amplitude

§ SNR

§ PSNR

§ Peak decay

Feature Extraction

Fourier Domain Features (Power Spectrum)
§ Max amplitude

§ Main frequency
§ Variance of peaks

Design a classifier

Feature 1

Fe
at
ur
e
2

Designing a classifier requires identification of the
function separating the labeled points

Consider a bidimensional problem

Designing a classifier: Burst separation

Determination of the linear separating border with Linear Discriminant
Analisys (LDA). We assume that the two classes have a gaussian
distribution with different means and identical covariance matrix

• Squares correspond to LDA values of real fractures

• Circles correspond to LDA values of false alarms

Some issues we need to focus on…

• Linear vs. non linear
• Many points versus the available
points

• Several tecniques are available
to design the classifier (KNN,
feedforward, SVM…)

Non linear regression

x

y

Given a set of n noise affected couples (xi,yi) we
wish to reconstruct the unknown function

xi

yi

• Supervised Learning: Statistical framework

Non-­linear regression: statistical framework

The time invariant process generating the data

provides, given input output instance

We collect a set of couples (training set)

And wish to model unknown with
parameterized family of models

Process generating the
data

xi

yi

The goal of learning
is to build the
simplest
approximating
model able to
explain past data ZN
and future instances
provided by the data
generating process.

38 3 Uncertainty, information and learning mechanisms

From (3.6), each perturbation introduces an increase in E[dy] if we consider the
quadratic form expansion (a first order approximation, obtained by solely maintain-
ing the linear term, provides a null value). In order to compute Var(dy), we consider
only the first term of the expansion (the quadratic term does not allow us to advance
the mathematics), which means that we only keep the linear approximation for func-
tion f (x). Under the above assumptions and by taking expectation w.r.t. x and dx,
the variance of the perturbed output becomes

Var(dy) = E
h
J(x)T

dxdxT J(x)
i

= trace
⇣

E
h
J(x)J(x)T

i
C

dx

⌘
.

Obviously, if f (x) = q

T x the derivation reduces to that of the linear function
case.

3.4 Learning from data and uncertainty at the model level

This section studies the case where parameterized models are built from a series
of noisy data. The use of a limited number of data to estimate the model, i.e., to
determine an estimate of the optimal parameter configuration, introduces an extra
source of uncertainty on the estimated parameters in addition to the noise (in previ-
ous sections, the parameters were given). In fact, given a different data set with the
same cardinality, we will obtain a different parameter configuration with probabil-
ity one, also in the linear model case. What happens when we select a non-optimal
(”wrong”) model to describe the data? Which is the relationship between the optimal
parameter configuration, constrained by the selected model family, and the current
one configured on a limited data set? Since the estimated parameter vector is a re-
alization of a random variable centered on the optimal one, the model we obtain
from the available data can be seen as a perturbed model induced by perturbations
affecting the parameter vector. Which are then the effects of this perturbation on the
performance of the model? This section aims at addressing the above aspects.

3.4.1 Basics of Learning: inherent, approximation and estimation
risks

Let ZN = {(x1,y1), ...,(xN ,yN)} be the set composed of N (input-output) couples.
The goal of machine learning is to build the simplest approximating model able to
explain past ZN data and future instances that will be provided by the data generating
process.

Consider then the situation where the process generating the data (system model)
is ruled by

y = g(x)+h , (3.7)

3.4 Learning from data and uncertainty at the model level 39

where h is a noise term modeling the existing uncertainty affecting the unknown
non linear function g(x), if any. Once the generic data instance xi is available, (3.7)
provides value yi = g(xi)+ hi, hi being a realization of the random variable h . In
practical cases, the system for which we aim to create a model, by receiving input
xi, provides value yi. We comment that both inputs and outputs are quantities mea-
surable through sensors. The ultimate goal of learning is to build an approximation
of g(x) based on the information present in dataset ZN through model family

f (q ,x) (3.8)

parameterized in the parameter vector q 2Q ⇢Rp. Selection of a suitable family
of models f (q ,x) can be driven by some a priori available information about the
system model. If data are likely to be generated by a linear model -or a linear model
suffices- then this type of model should be considered. In this case, learning relies
on vast results provided by the system identification theory, e.g., see [130]. The
outcome of the the learning procedure is the parameter configuration q̂ and, hence,
model f (q̂ ,x), whose quality/accuracy must be assessed.

If the accuracy performance is not met, and margin for improvement exists, we
have to select a new model family and reiterate the learning process. For instance, if
the difference -residual- between the reconstructed value f (q̂ ,x) and the measured
y(x) one on a new data set in not a white noise (test procedure), then there is informa-
tion that model f (q̂ ,x) was not able to capture. A new richer model family should be
chosen and learning re-started. In this direction, feedforward neural networks have
been shown to be universal function approximators [131], i.e., can approximate any
nonlinear function, and are ideal candidates to solve the above learning problem
[39]. However, the complexity of the neural model family must be balanced with
the information content provided by the data, otherwise we might experience poor
approximating accuracy. Such performance loss is either associated with overfitting
(the degrees of freedom exposed by the family model are overdimensioned com-
pared to the effective needs, so that noise affecting the data instances is learned as
well) or underfitting (the model is underdimensioned w.r.t. the available data and
the model cannot extract all the information present in the data).

In the sequel, we present the classic learning from data mechanism based on the
statistical formulation set by Vapnik [132], [133], [134].

Define as Structural risk the function

V̄ (q) =
Z

L(y, f (q ,x)) px,ydxy (3.9)

where L(y, f (q ,x)) is a discrepancy loss function evaluating the closeness be-
tween g(x) and f (q ,x) and px,y is the probability density function associated with
the i.i.d. (x,y) random variable vector. The structural risk (3.9) assesses the accuracy
of a given model according to the loss function L(y, f (q ,x)).

The optimal parameter q

o yielding the optimal model f (q o,x) constrained by
the particular choice of the model family f (q ,x), is

3.4 Learning from data and uncertainty at the model level 39

where h is a noise term modeling the existing uncertainty affecting the unknown
non linear function g(x), if any. Once the generic data instance xi is available, (3.7)
provides value yi = g(xi)+ hi, hi being a realization of the random variable h . In
practical cases, the system for which we aim to create a model, by receiving input
xi, provides value yi. We comment that both inputs and outputs are quantities mea-
surable through sensors. The ultimate goal of learning is to build an approximation
of g(x) based on the information present in dataset ZN through model family

f (q ,x) (3.8)

parameterized in the parameter vector q 2Q ⇢Rp. Selection of a suitable family
of models f (q ,x) can be driven by some a priori available information about the
system model. If data are likely to be generated by a linear model -or a linear model
suffices- then this type of model should be considered. In this case, learning relies
on vast results provided by the system identification theory, e.g., see [130]. The
outcome of the the learning procedure is the parameter configuration q̂ and, hence,
model f (q̂ ,x), whose quality/accuracy must be assessed.

If the accuracy performance is not met, and margin for improvement exists, we
have to select a new model family and reiterate the learning process. For instance, if
the difference -residual- between the reconstructed value f (q̂ ,x) and the measured
y(x) one on a new data set in not a white noise (test procedure), then there is informa-
tion that model f (q̂ ,x) was not able to capture. A new richer model family should be
chosen and learning re-started. In this direction, feedforward neural networks have
been shown to be universal function approximators [131], i.e., can approximate any
nonlinear function, and are ideal candidates to solve the above learning problem
[39]. However, the complexity of the neural model family must be balanced with
the information content provided by the data, otherwise we might experience poor
approximating accuracy. Such performance loss is either associated with overfitting
(the degrees of freedom exposed by the family model are overdimensioned com-
pared to the effective needs, so that noise affecting the data instances is learned as
well) or underfitting (the model is underdimensioned w.r.t. the available data and
the model cannot extract all the information present in the data).

In the sequel, we present the classic learning from data mechanism based on the
statistical formulation set by Vapnik [132], [133], [134].

Define as Structural risk the function

V̄ (q) =
Z

L(y, f (q ,x)) px,ydxy (3.9)

where L(y, f (q ,x)) is a discrepancy loss function evaluating the closeness be-
tween g(x) and f (q ,x) and px,y is the probability density function associated with
the i.i.d. (x,y) random variable vector. The structural risk (3.9) assesses the accuracy
of a given model according to the loss function L(y, f (q ,x)).

The optimal parameter q

o yielding the optimal model f (q o,x) constrained by
the particular choice of the model family f (q ,x), is

3.4 Learning from data and uncertainty at the model level 39

where h is a noise term modeling the existing uncertainty affecting the unknown
non linear function g(x), if any. Once the generic data instance xi is available, (3.7)
provides value yi = g(xi)+ hi, hi being a realization of the random variable h . In
practical cases, the system for which we aim to create a model, by receiving input
xi, provides value yi. We comment that both inputs and outputs are quantities mea-
surable through sensors. The ultimate goal of learning is to build an approximation
of g(x) based on the information present in dataset ZN through model family

f (q ,x) (3.8)

parameterized in the parameter vector q 2Q ⇢Rp. Selection of a suitable family
of models f (q ,x) can be driven by some a priori available information about the
system model. If data are likely to be generated by a linear model -or a linear model
suffices- then this type of model should be considered. In this case, learning relies
on vast results provided by the system identification theory, e.g., see [130]. The
outcome of the the learning procedure is the parameter configuration q̂ and, hence,
model f (q̂ ,x), whose quality/accuracy must be assessed.

If the accuracy performance is not met, and margin for improvement exists, we
have to select a new model family and reiterate the learning process. For instance, if
the difference -residual- between the reconstructed value f (q̂ ,x) and the measured
y(x) one on a new data set in not a white noise (test procedure), then there is informa-
tion that model f (q̂ ,x) was not able to capture. A new richer model family should be
chosen and learning re-started. In this direction, feedforward neural networks have
been shown to be universal function approximators [131], i.e., can approximate any
nonlinear function, and are ideal candidates to solve the above learning problem
[39]. However, the complexity of the neural model family must be balanced with
the information content provided by the data, otherwise we might experience poor
approximating accuracy. Such performance loss is either associated with overfitting
(the degrees of freedom exposed by the family model are overdimensioned com-
pared to the effective needs, so that noise affecting the data instances is learned as
well) or underfitting (the model is underdimensioned w.r.t. the available data and
the model cannot extract all the information present in the data).

In the sequel, we present the classic learning from data mechanism based on the
statistical formulation set by Vapnik [132], [133], [134].

Define as Structural risk the function

V̄ (q) =
Z

L(y, f (q ,x)) px,ydxy (3.9)

where L(y, f (q ,x)) is a discrepancy loss function evaluating the closeness be-
tween g(x) and f (q ,x) and px,y is the probability density function associated with
the i.i.d. (x,y) random variable vector. The structural risk (3.9) assesses the accuracy
of a given model according to the loss function L(y, f (q ,x)).

The optimal parameter q

o yielding the optimal model f (q o,x) constrained by
the particular choice of the model family f (q ,x), is

3.4 Learning from data and uncertainty at the model level 39

where h is a noise term modeling the existing uncertainty affecting the unknown
non linear function g(x), if any. Once the generic data instance xi is available, (3.7)
provides value yi = g(xi)+ hi, hi being a realization of the random variable h . In
practical cases, the system for which we aim to create a model, by receiving input
xi, provides value yi. We comment that both inputs and outputs are quantities mea-
surable through sensors. The ultimate goal of learning is to build an approximation
of g(x) based on the information present in dataset ZN through model family

f (q ,x) (3.8)

parameterized in the parameter vector q 2Q ⇢Rp. Selection of a suitable family
of models f (q ,x) can be driven by some a priori available information about the
system model. If data are likely to be generated by a linear model -or a linear model
suffices- then this type of model should be considered. In this case, learning relies
on vast results provided by the system identification theory, e.g., see [130]. The
outcome of the the learning procedure is the parameter configuration q̂ and, hence,
model f (q̂ ,x), whose quality/accuracy must be assessed.

If the accuracy performance is not met, and margin for improvement exists, we
have to select a new model family and reiterate the learning process. For instance, if
the difference -residual- between the reconstructed value f (q̂ ,x) and the measured
y(x) one on a new data set in not a white noise (test procedure), then there is informa-
tion that model f (q̂ ,x) was not able to capture. A new richer model family should be
chosen and learning re-started. In this direction, feedforward neural networks have
been shown to be universal function approximators [131], i.e., can approximate any
nonlinear function, and are ideal candidates to solve the above learning problem
[39]. However, the complexity of the neural model family must be balanced with
the information content provided by the data, otherwise we might experience poor
approximating accuracy. Such performance loss is either associated with overfitting
(the degrees of freedom exposed by the family model are overdimensioned com-
pared to the effective needs, so that noise affecting the data instances is learned as
well) or underfitting (the model is underdimensioned w.r.t. the available data and
the model cannot extract all the information present in the data).

In the sequel, we present the classic learning from data mechanism based on the
statistical formulation set by Vapnik [132], [133], [134].

Define as Structural risk the function

V̄ (q) =
Z

L(y, f (q ,x)) px,ydxy (3.9)

where L(y, f (q ,x)) is a discrepancy loss function evaluating the closeness be-
tween g(x) and f (q ,x) and px,y is the probability density function associated with
the i.i.d. (x,y) random variable vector. The structural risk (3.9) assesses the accuracy
of a given model according to the loss function L(y, f (q ,x)).

The optimal parameter q

o yielding the optimal model f (q o,x) constrained by
the particular choice of the model family f (q ,x), is

38 3 Uncertainty, information and learning mechanisms

From (3.6), each perturbation introduces an increase in E[dy] if we consider the
quadratic form expansion (a first order approximation, obtained by solely maintain-
ing the linear term, provides a null value). In order to compute Var(dy), we consider
only the first term of the expansion (the quadratic term does not allow us to advance
the mathematics), which means that we only keep the linear approximation for func-
tion f (x). Under the above assumptions and by taking expectation w.r.t. x and dx,
the variance of the perturbed output becomes

Var(dy) = E
h
J(x)T

dxdxT J(x)
i

= trace
⇣

E
h
J(x)J(x)T

i
C

dx

⌘
.

Obviously, if f (x) = q

T x the derivation reduces to that of the linear function
case.

3.4 Learning from data and uncertainty at the model level

This section studies the case where parameterized models are built from a series
of noisy data. The use of a limited number of data to estimate the model, i.e., to
determine an estimate of the optimal parameter configuration, introduces an extra
source of uncertainty on the estimated parameters in addition to the noise (in previ-
ous sections, the parameters were given). In fact, given a different data set with the
same cardinality, we will obtain a different parameter configuration with probabil-
ity one, also in the linear model case. What happens when we select a non-optimal
(”wrong”) model to describe the data? Which is the relationship between the optimal
parameter configuration, constrained by the selected model family, and the current
one configured on a limited data set? Since the estimated parameter vector is a re-
alization of a random variable centered on the optimal one, the model we obtain
from the available data can be seen as a perturbed model induced by perturbations
affecting the parameter vector. Which are then the effects of this perturbation on the
performance of the model? This section aims at addressing the above aspects.

3.4.1 Basics of Learning: inherent, approximation and estimation
risks

Let ZN = {(x1,y1), ...,(xN ,yN)} be the set composed of N (input-output) couples.
The goal of machine learning is to build the simplest approximating model able to
explain past ZN data and future instances that will be provided by the data generating
process.

Consider then the situation where the process generating the data (system model)
is ruled by

y = g(x)+h , (3.7)

Always exploit available information

The parameterized family of models takes
advantage of a priori information about .

-­ belongs to a nested hierarchy of model families
-­ is mostly continuous and differentiable
-­ is chosen according to the a priori information we have
about (e.g., gray box modeling), model
complexity (linear families) or universal function
approximation ability.

-­ Not rarely it is linear
-­ It can also have dynamics (e.g. AR, ARX, recurrent
networks)

3.4 Learning from data and uncertainty at the model level 39

where h is a noise term modeling the existing uncertainty affecting the unknown
non linear function g(x), if any. Once the generic data instance xi is available, (3.7)
provides value yi = g(xi)+ hi, hi being a realization of the random variable h . In
practical cases, the system for which we aim to create a model, by receiving input
xi, provides value yi. We comment that both inputs and outputs are quantities mea-
surable through sensors. The ultimate goal of learning is to build an approximation
of g(x) based on the information present in dataset ZN through model family

f (q ,x) (3.8)

parameterized in the parameter vector q 2Q ⇢Rp. Selection of a suitable family
of models f (q ,x) can be driven by some a priori available information about the
system model. If data are likely to be generated by a linear model -or a linear model
suffices- then this type of model should be considered. In this case, learning relies
on vast results provided by the system identification theory, e.g., see [130]. The
outcome of the the learning procedure is the parameter configuration q̂ and, hence,
model f (q̂ ,x), whose quality/accuracy must be assessed.

If the accuracy performance is not met, and margin for improvement exists, we
have to select a new model family and reiterate the learning process. For instance, if
the difference -residual- between the reconstructed value f (q̂ ,x) and the measured
y(x) one on a new data set in not a white noise (test procedure), then there is informa-
tion that model f (q̂ ,x) was not able to capture. A new richer model family should be
chosen and learning re-started. In this direction, feedforward neural networks have
been shown to be universal function approximators [131], i.e., can approximate any
nonlinear function, and are ideal candidates to solve the above learning problem
[39]. However, the complexity of the neural model family must be balanced with
the information content provided by the data, otherwise we might experience poor
approximating accuracy. Such performance loss is either associated with overfitting
(the degrees of freedom exposed by the family model are overdimensioned com-
pared to the effective needs, so that noise affecting the data instances is learned as
well) or underfitting (the model is underdimensioned w.r.t. the available data and
the model cannot extract all the information present in the data).

In the sequel, we present the classic learning from data mechanism based on the
statistical formulation set by Vapnik [132], [133], [134].

Define as Structural risk the function

V̄ (q) =
Z

L(y, f (q ,x)) px,ydxy (3.9)

where L(y, f (q ,x)) is a discrepancy loss function evaluating the closeness be-
tween g(x) and f (q ,x) and px,y is the probability density function associated with
the i.i.d. (x,y) random variable vector. The structural risk (3.9) assesses the accuracy
of a given model according to the loss function L(y, f (q ,x)).

The optimal parameter q

o yielding the optimal model f (q o,x) constrained by
the particular choice of the model family f (q ,x), is

3.4 Learning from data and uncertainty at the model level 39

where h is a noise term modeling the existing uncertainty affecting the unknown
non linear function g(x), if any. Once the generic data instance xi is available, (3.7)
provides value yi = g(xi)+ hi, hi being a realization of the random variable h . In
practical cases, the system for which we aim to create a model, by receiving input
xi, provides value yi. We comment that both inputs and outputs are quantities mea-
surable through sensors. The ultimate goal of learning is to build an approximation
of g(x) based on the information present in dataset ZN through model family

f (q ,x) (3.8)

parameterized in the parameter vector q 2Q ⇢Rp. Selection of a suitable family
of models f (q ,x) can be driven by some a priori available information about the
system model. If data are likely to be generated by a linear model -or a linear model
suffices- then this type of model should be considered. In this case, learning relies
on vast results provided by the system identification theory, e.g., see [130]. The
outcome of the the learning procedure is the parameter configuration q̂ and, hence,
model f (q̂ ,x), whose quality/accuracy must be assessed.

If the accuracy performance is not met, and margin for improvement exists, we
have to select a new model family and reiterate the learning process. For instance, if
the difference -residual- between the reconstructed value f (q̂ ,x) and the measured
y(x) one on a new data set in not a white noise (test procedure), then there is informa-
tion that model f (q̂ ,x) was not able to capture. A new richer model family should be
chosen and learning re-started. In this direction, feedforward neural networks have
been shown to be universal function approximators [131], i.e., can approximate any
nonlinear function, and are ideal candidates to solve the above learning problem
[39]. However, the complexity of the neural model family must be balanced with
the information content provided by the data, otherwise we might experience poor
approximating accuracy. Such performance loss is either associated with overfitting
(the degrees of freedom exposed by the family model are overdimensioned com-
pared to the effective needs, so that noise affecting the data instances is learned as
well) or underfitting (the model is underdimensioned w.r.t. the available data and
the model cannot extract all the information present in the data).

In the sequel, we present the classic learning from data mechanism based on the
statistical formulation set by Vapnik [132], [133], [134].

Define as Structural risk the function

V̄ (q) =
Z

L(y, f (q ,x)) px,ydxy (3.9)

where L(y, f (q ,x)) is a discrepancy loss function evaluating the closeness be-
tween g(x) and f (q ,x) and px,y is the probability density function associated with
the i.i.d. (x,y) random variable vector. The structural risk (3.9) assesses the accuracy
of a given model according to the loss function L(y, f (q ,x)).

The optimal parameter q

o yielding the optimal model f (q o,x) constrained by
the particular choice of the model family f (q ,x), is

3.4 Learning from data and uncertainty at the model level 39

where h is a noise term modeling the existing uncertainty affecting the unknown
non linear function g(x), if any. Once the generic data instance xi is available, (3.7)
provides value yi = g(xi)+ hi, hi being a realization of the random variable h . In
practical cases, the system for which we aim to create a model, by receiving input
xi, provides value yi. We comment that both inputs and outputs are quantities mea-
surable through sensors. The ultimate goal of learning is to build an approximation
of g(x) based on the information present in dataset ZN through model family

f (q ,x) (3.8)

parameterized in the parameter vector q 2Q ⇢Rp. Selection of a suitable family
of models f (q ,x) can be driven by some a priori available information about the
system model. If data are likely to be generated by a linear model -or a linear model
suffices- then this type of model should be considered. In this case, learning relies
on vast results provided by the system identification theory, e.g., see [130]. The
outcome of the the learning procedure is the parameter configuration q̂ and, hence,
model f (q̂ ,x), whose quality/accuracy must be assessed.

If the accuracy performance is not met, and margin for improvement exists, we
have to select a new model family and reiterate the learning process. For instance, if
the difference -residual- between the reconstructed value f (q̂ ,x) and the measured
y(x) one on a new data set in not a white noise (test procedure), then there is informa-
tion that model f (q̂ ,x) was not able to capture. A new richer model family should be
chosen and learning re-started. In this direction, feedforward neural networks have
been shown to be universal function approximators [131], i.e., can approximate any
nonlinear function, and are ideal candidates to solve the above learning problem
[39]. However, the complexity of the neural model family must be balanced with
the information content provided by the data, otherwise we might experience poor
approximating accuracy. Such performance loss is either associated with overfitting
(the degrees of freedom exposed by the family model are overdimensioned com-
pared to the effective needs, so that noise affecting the data instances is learned as
well) or underfitting (the model is underdimensioned w.r.t. the available data and
the model cannot extract all the information present in the data).

In the sequel, we present the classic learning from data mechanism based on the
statistical formulation set by Vapnik [132], [133], [134].

Define as Structural risk the function

V̄ (q) =
Z

L(y, f (q ,x)) px,ydxy (3.9)

where L(y, f (q ,x)) is a discrepancy loss function evaluating the closeness be-
tween g(x) and f (q ,x) and px,y is the probability density function associated with
the i.i.d. (x,y) random variable vector. The structural risk (3.9) assesses the accuracy
of a given model according to the loss function L(y, f (q ,x)).

The optimal parameter q

o yielding the optimal model f (q o,x) constrained by
the particular choice of the model family f (q ,x), is

The statistical learning framework

Structural risk

Empirical risk

Learning procedure

Inherent, approximation and estimation risks

40 3 Uncertainty, information and learning mechanisms

q

o = argmin
q2Q

V̄ (q).

However, we do not have access to px,y and only the dataset ZN is available. Such
an information allows us to construct the empirical distribution

p̂x,y =
1
N

N

Â
i=1

D
d

(x� xi,y� yi) (3.10)

where D
d

(x � xi,y � yi) is the Dirac function. The use of the estimate p̂x,y of
(3.10) in (3.9) leads to the Empirical Risk

VN(q) =
1
N

N

Â
i=1

L(yi, f (q ,xi)) . (3.11)

Finally, minimization of the empirical risk provides the estimate q̂

q̂ = argmin
q2Q

VN(q) (3.12)

and, in turn, the model f (q̂ ,x) approximating g(x) whose accuracy performance
is V̄ (q̂). Minimization of the empirical risk defined in (3.12) is also called the learn-
ing process and the minimization procedure learning algorithm.

Conditions granting q̂ to converge to q

o as well as observations regarding the
speed of convergence will be given later in the chapter. Here, we introduce at first
the concepts of inherent risk, approximation risk and estimation risk relevant to
subsequent analyses.

Define VI = V̄ (q o)|g(x)= f (q o,x) to be the inherent risk, i.e., the a priori non-null
intrinsic risk we have when unknown function g(x) belongs to the chosen model
family, i.e., g(x) = f (q o,x). Rewrite the structural risk V̄ (q̂) associated with model
f (q̂ ,x), i.e., the performance of the obtained model, as

V̄ (q̂) =
�
V̄ (q̂)�V̄ (q o)

�
+(V̄ (q o)�VI)+VI . (3.13)

The risk associated with the model is composed of three terms

• The inherent risk VI . The risk depends only on the structure of the learning prob-
lem and, for this reason, can be improved only by improving the problem itself,
i.e., by acting on the process generating the data, (e.g., by designing a more pre-
cise sensor architecture). Nothing else can be done. This is the minimum risk we
can have and we reach it -implying optimal accuracy performance in function
approximation- when the other sources of uncertainty leading to the two other
risks are null;

• The approximation risk V̄ (q o) �VI . The risk depends on how close the model
family (also named hypothesis space) is to the process generating the data. To
improve it we need to select model families that are more and more expressive,
i.e., either contain or are very close to g(x) according to the figure of merit L(·, ·).
Given an unknown g(x) function, we need to select families of approximating
functions that are universal function approximator, e.g., feedforward neural net-
works.

• The inherent risk depends only on the structure of the
learning problem and, for this reason, can be reduced
only by improving the problem itself

• The approximation risk depends on how close the model
family (also named hypothesis space) is to the process
generating the data

• The estimation risk depends on the ability of the learning
algorithm to select a parameter vector close to

3.4 Learning from data and uncertainty at the model level 41

• The estimation risk V̄ (q̂)�V̄ (q o). The risk depends on the ability of the learning
algorithm to select a parameter vector q̂ close to q

o. If we have an effective
learning process, we hope to be able to get a q̂ close to q

o so that the contribution
to the model risk is negligible.

The theory allows us to understand the intrinsic limits of learning. A learning
problem is affected by three sources of error; of these, the inherent one is determined
by the nature of the problem and, for this reason, cannot be improved by learning.
The remaining error sources, i.e., those introduced by the approximation and the
estimation processes, are the true target of any learning procedure.

Asymptotically with the number of available data N, the approximation and the
estimation errors can both be controlled if the learning method has some basic
consistency features (which most practical methods have). But when the available
dataset is small, the dominating component of the learning error is determined, if the
method is consistent, by the approximation error, i.e., by how well the model family
f (q ,x) is close to the process generating the data g(x). In other words, the model
risk is mainly determined by the choice of the approximating function f (q ,x), rather
by the training procedure. As a consequence, in the absence of a priori information,
we have no basis to prefer a consistent learning method to another one. Further de-
tails applied to the particular case where the learning problem is of classification
type can be found in [135].

Example: inherent, approximation and estimation risks

Consider a quadratic loss function L(y, f (q ,x)) = (y� f (q ,x))2 and a process gen-
erating the data ruled by g(x) = x,x 2 [0,1] affected by a gaussian noise so that
h = N (0,s2

h

)

y = x+h .

Consider the function family f (q ,x) = k,q = [k]. The structural risk becomes

V̄ (q) =
Z

(x+h � k)2 1p
2p

e
�h

2
2 dxdh (3.14)

that, after some calculus, leads to

V̄ (q) =
1
3

+s

2
h

+ k2 � k. (3.15)

Figure 3.3 presents the structural risk as function of k for the case s

2
h

= 0.01. We
see that the curve is characterized by a unique minimum q

o.
The optimal point

q

o = argmin
q2Q

V̄ (q)

can be obtained by imposing the stationary relationship ∂V̄ (q)
∂q

= 0 and leads to
q

o = [1
2]. Assume that the learning procedure has provided value q̂ = [1

4]. The learn-

3.4 Learning from data and uncertainty at the model level 41

• The estimation risk V̄ (q̂)�V̄ (q o). The risk depends on the ability of the learning
algorithm to select a parameter vector q̂ close to q

o. If we have an effective
learning process, we hope to be able to get a q̂ close to q

o so that the contribution
to the model risk is negligible.

The theory allows us to understand the intrinsic limits of learning. A learning
problem is affected by three sources of error; of these, the inherent one is determined
by the nature of the problem and, for this reason, cannot be improved by learning.
The remaining error sources, i.e., those introduced by the approximation and the
estimation processes, are the true target of any learning procedure.

Asymptotically with the number of available data N, the approximation and the
estimation errors can both be controlled if the learning method has some basic
consistency features (which most practical methods have). But when the available
dataset is small, the dominating component of the learning error is determined, if the
method is consistent, by the approximation error, i.e., by how well the model family
f (q ,x) is close to the process generating the data g(x). In other words, the model
risk is mainly determined by the choice of the approximating function f (q ,x), rather
by the training procedure. As a consequence, in the absence of a priori information,
we have no basis to prefer a consistent learning method to another one. Further de-
tails applied to the particular case where the learning problem is of classification
type can be found in [135].

Example: inherent, approximation and estimation risks

Consider a quadratic loss function L(y, f (q ,x)) = (y� f (q ,x))2 and a process gen-
erating the data ruled by g(x) = x,x 2 [0,1] affected by a gaussian noise so that
h = N (0,s2

h

)

y = x+h .

Consider the function family f (q ,x) = k,q = [k]. The structural risk becomes

V̄ (q) =
Z

(x+h � k)2 1p
2p

e
�h

2
2 dxdh (3.14)

that, after some calculus, leads to

V̄ (q) =
1
3

+s

2
h

+ k2 � k. (3.15)

Figure 3.3 presents the structural risk as function of k for the case s

2
h

= 0.01. We
see that the curve is characterized by a unique minimum q

o.
The optimal point

q

o = argmin
q2Q

V̄ (q)

can be obtained by imposing the stationary relationship ∂V̄ (q)
∂q

= 0 and leads to
q

o = [1
2]. Assume that the learning procedure has provided value q̂ = [1

4]. The learn-

inheren
t risk

approximation
risk

estimatio
n risk

Approximation and estimation risks

Target Space

Model Space

Optimal Model

Best Reachable Model
Selected Model

Approximation and estimation risks

Target Space

Model Space

Optimal Model

Best Reachable Model
Selected Model

Approx.
Error

Estimation
Error

Choosing a universal function approximator

Not rarely is chosen as a feedforward neural
network

xi

3.4 Learning from data and uncertainty at the model level 39

where h is a noise term modeling the existing uncertainty affecting the unknown
non linear function g(x), if any. Once the generic data instance xi is available, (3.7)
provides value yi = g(xi)+ hi, hi being a realization of the random variable h . In
practical cases, the system for which we aim to create a model, by receiving input
xi, provides value yi. We comment that both inputs and outputs are quantities mea-
surable through sensors. The ultimate goal of learning is to build an approximation
of g(x) based on the information present in dataset ZN through model family

f (q ,x) (3.8)

parameterized in the parameter vector q 2Q ⇢Rp. Selection of a suitable family
of models f (q ,x) can be driven by some a priori available information about the
system model. If data are likely to be generated by a linear model -or a linear model
suffices- then this type of model should be considered. In this case, learning relies
on vast results provided by the system identification theory, e.g., see [130]. The
outcome of the the learning procedure is the parameter configuration q̂ and, hence,
model f (q̂ ,x), whose quality/accuracy must be assessed.

If the accuracy performance is not met, and margin for improvement exists, we
have to select a new model family and reiterate the learning process. For instance, if
the difference -residual- between the reconstructed value f (q̂ ,x) and the measured
y(x) one on a new data set in not a white noise (test procedure), then there is informa-
tion that model f (q̂ ,x) was not able to capture. A new richer model family should be
chosen and learning re-started. In this direction, feedforward neural networks have
been shown to be universal function approximators [131], i.e., can approximate any
nonlinear function, and are ideal candidates to solve the above learning problem
[39]. However, the complexity of the neural model family must be balanced with
the information content provided by the data, otherwise we might experience poor
approximating accuracy. Such performance loss is either associated with overfitting
(the degrees of freedom exposed by the family model are overdimensioned com-
pared to the effective needs, so that noise affecting the data instances is learned as
well) or underfitting (the model is underdimensioned w.r.t. the available data and
the model cannot extract all the information present in the data).

In the sequel, we present the classic learning from data mechanism based on the
statistical formulation set by Vapnik [132], [133], [134].

Define as Structural risk the function

V̄ (q) =
Z

L(y, f (q ,x)) px,ydxy (3.9)

where L(y, f (q ,x)) is a discrepancy loss function evaluating the closeness be-
tween g(x) and f (q ,x) and px,y is the probability density function associated with
the i.i.d. (x,y) random variable vector. The structural risk (3.9) assesses the accuracy
of a given model according to the loss function L(y, f (q ,x)).

The optimal parameter q

o yielding the optimal model f (q o,x) constrained by
the particular choice of the model family f (q ,x), is

3.4 Learning from data and uncertainty at the model level 39

where h is a noise term modeling the existing uncertainty affecting the unknown
non linear function g(x), if any. Once the generic data instance xi is available, (3.7)
provides value yi = g(xi)+ hi, hi being a realization of the random variable h . In
practical cases, the system for which we aim to create a model, by receiving input
xi, provides value yi. We comment that both inputs and outputs are quantities mea-
surable through sensors. The ultimate goal of learning is to build an approximation
of g(x) based on the information present in dataset ZN through model family

f (q ,x) (3.8)

parameterized in the parameter vector q 2Q ⇢Rp. Selection of a suitable family
of models f (q ,x) can be driven by some a priori available information about the
system model. If data are likely to be generated by a linear model -or a linear model
suffices- then this type of model should be considered. In this case, learning relies
on vast results provided by the system identification theory, e.g., see [130]. The
outcome of the the learning procedure is the parameter configuration q̂ and, hence,
model f (q̂ ,x), whose quality/accuracy must be assessed.

If the accuracy performance is not met, and margin for improvement exists, we
have to select a new model family and reiterate the learning process. For instance, if
the difference -residual- between the reconstructed value f (q̂ ,x) and the measured
y(x) one on a new data set in not a white noise (test procedure), then there is informa-
tion that model f (q̂ ,x) was not able to capture. A new richer model family should be
chosen and learning re-started. In this direction, feedforward neural networks have
been shown to be universal function approximators [131], i.e., can approximate any
nonlinear function, and are ideal candidates to solve the above learning problem
[39]. However, the complexity of the neural model family must be balanced with
the information content provided by the data, otherwise we might experience poor
approximating accuracy. Such performance loss is either associated with overfitting
(the degrees of freedom exposed by the family model are overdimensioned com-
pared to the effective needs, so that noise affecting the data instances is learned as
well) or underfitting (the model is underdimensioned w.r.t. the available data and
the model cannot extract all the information present in the data).

In the sequel, we present the classic learning from data mechanism based on the
statistical formulation set by Vapnik [132], [133], [134].

Define as Structural risk the function

V̄ (q) =
Z

L(y, f (q ,x)) px,ydxy (3.9)

where L(y, f (q ,x)) is a discrepancy loss function evaluating the closeness be-
tween g(x) and f (q ,x) and px,y is the probability density function associated with
the i.i.d. (x,y) random variable vector. The structural risk (3.9) assesses the accuracy
of a given model according to the loss function L(y, f (q ,x)).

The optimal parameter q

o yielding the optimal model f (q o,x) constrained by
the particular choice of the model family f (q ,x), is

And the function implemented by a neuron is

The activation function can be
• A hard limiter function
• A sigmodal-­like function
• A linear one (output layer)

Choosing an universal function approximator

Quality assessment of the solution

«How good is your ‘good’?»

Assessing the performance (1)

§ Apparent Error Rate (AER),or resubstitution: The whole
set ZN is used both to infer the model and to estimate its
error

§ Sample Partitioning (SP): SD and SE are obtained by
randomly splitting ZN in two disjoint subsets. SD is used to
estimate the model and SE to estimate its accuracy.

§ Leaving-­One-­Out (LOO): SE contains one pattern in ZN,
and SD contains the remaining n − 1 patterns. The pro-­
cedure is iterated n times by holding out each pattern in
ZN, and the resulting n estimates are averaged.

Assessing the performance (2)

§ w-­fold Crossvalidation (wCV): ZN is randomly split into
w disjoint subsets of equal size. For each subset the
re-­ maining w − 1 subsets are merged to form SD and
the reserved subset is used as SE . The resulting w
estimates are averaged. This procedure can be
iterated and the results averaged when w ≪ n in order
to reduce the random resampling variance. This
estimate is a generalization of LOO.

An example: Binomial law confidence interval
for the classifier accuracy

But ….

… what about the confidence
of an estimator?

• Bootstrap
• Bag of little bootstrap

Quality assessment

The bootstrap

§ In the bootstrap method data sets are
extracted with replacement from Zn

The bag of little bootstraps method

§ BLB shows to be accurate and appears to over-­perform all
other bootstrap methods in terms of computational
complexity, hence becoming a very appealing method for
Big Data

e.g., γ=0.6

Let’s play with MATLAB

§ Download the examples related to Lecture 3 – Part 2

§ In the ZIP file:
• Example 3_2_A.m

− Linear dataset, linear model
• Example 3_2_B.m

− Linear dataset, nonlinear model
• Example 3_2_C.m

− Nonlinear dataset, linear model
• Example 3_2_D.m

− Nonlinear dataset, nonlinear model
• Example 3_2_E.m

− Different number of hidden units
• Example 3_2_F.m

− Classification and Apparent Error Rate
• Example 3_2_G.m

− Classification and Sample Partitioning

