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| Uncertaintanty and Learning

= The real world is prone to uncertainty

= At different level of the data analysis process
- Acquiring data
- Representing information }Pam of

_ _ _ this lecture
- Processing the information

- Learning mechanisms
= Two questions:
v Why do we need learning mechanisms?

v Which are basics of supervised statistical learning?
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A “toy” example

?? Physical model ? Data-driven might
A very tough | did not completed be a good solution
classification my PhD in Physics (brute-force as well)
problem yet

Pass

NO Pass
What is the learning goal here?

POLITECNICO DI MILANO



I
N| Data-processing and applications
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~ Data generating
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‘ process
\_/\ —

Application

\

POLITECNICO DI MILANO




|System modeling

Not rarely we wish to generate a functional
dependency among sensor datastreams (model)

to solve a problem. Some examples

= Design a Classifier

- e.g., optical character recognition, face recognition,
explosive detection, quality analysis in the
manufactoring industry...

= Construct a functional dependency
(function regression)

- e.g., function reconstruction, data regularization,
predictive modeling...
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|System modeling

* In some cases the physical equations describing
the process are available but some parameters
need to be determined

* |In others, we do not know the equations ruling
the system

= |f the considered model is linear we speak about
system identification, when not linear about

learning
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theoretical experimental
modelling modelling
- physical laws - physical I- signals - physical I - signals - input/output
known; laws | measur- rules | measur- signals measurable;
- parameters known; 1 able known; 1 able - assumption of a
known - para- | -model | model structure
meters | structure |
unknown : unknown; :
: - parameters|
[ unkown |

v

v

white-box
models

linear/non-linear
differential equations

light-grey-box
models
differential equations
w. parameter estimation

black-box
models

- impulse response;
- neurnal networks
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N Learning the system model

P

Data generating

4
process
k/\ /\/

(x.y)

S

. Application

- |

We will come back to the learning mechanism later

Estimate
a model
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S _

* A real example: classifying microacoustic
bursts
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= We wish to q e -
automatically identify |
microacoustic bursts
to reduce the false
alarms (data trigger)

= The application
requires to design a
classifier assigning a
relevant/not relevant
label to bursts




I
| Designing a Classifier

= Burst alignment: bursts need to
be aligned to provide a common
comparison

= Bursts are then processed to

2. Feature extract scalar features

Extraction

= Design the classifier from
available bursts

= Bursts are automatically

4. h
5 ik classified

classifier
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Microacoustic Bursts

= Each burst is projected onto an adaptive orthonormal three-axis
system estimated with a Principal Component Analysis (PCA)

burst 23 node 3 X axis:
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| Pre-processing

Only the principal and the leat signifcant components are further processed

burst 23 node 3 X axis:
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accelerometric p.u.

Feature Extraction

Time Domain Features

= Mean (before PCA)

= PCA eigenvalue

= Max amplitude

= SNR
= PSNR

= Peak decay

Burst in time-domain
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Fourier Spectrum

Feature Extraction

Fourier Domain Features (Power Spectrum)
= Max amplitude
= Main frequency

= Variance of peaks

Fourier Spectrum

0.2 | I
— Fourier Spectrum
0.18 ./,\ ---=-- Amplitude i
j,f' A ®  Main Frequency
016 — /"\,\ / '.\ % Fourier Peaks M
/
014 / \ —
/'/ l'
012 / \ -
/

0.04 / S —
/"/ \‘\
0.02 . - . _|
. ——R X_/ T
0 e | % T | | | * | | S |
0 100 200 300 400 500 600 700 800 900 1000
Hz

POLITECNICO DI MILANO




I
| Design a classifier

A Consider a bidimensional problem
o O
= ® e ©°
T ® O
L O o 0‘0
1 -— —>
O “
Feature 1
@)

Designing a classifier requires identification of the
function separating the labeled points
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N Designing a classifier: Burst separation

- Squares correspond to LDA values of real fractures

- Circles correspond to LDA values of false alarms

Projection along LDA axis
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| Some issues we need to focus on...
|

A
o
o o0

o ¢ o
®
o

® -
° o
o

e Linear vs. non linear

« Many points versus the available
points

« Several tecniques are available
to design the classifier (KNN,
feedforward, SVM...)
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Non linear regression

Given a set of n noise affected couples (x,y;) we
wish to reconstruct the unknown function

- I POLITECNICO DI MILANO




S _

 Supervised Learning: Statistical framework
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B
N| Non-linear regression: statistical framework

The time invariant process generating the data

y=g(x)+m. The goal of learning

provides, given input x;output instance |S. to build the
simplest

yi = g(xi) + M approximating
model able to
We collect a set of couples (training set) explain past data Z/\/

Zy = {(x1,y1), ..., (xy,yy)} @ndfuture instances
provided by the data

And wish to model unknown g(x) with generatmg Process.

parameterized family of models f(8,x)
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| Always exploit available information

The parameterized family of models f(8,x) takes
advantage of a priori information about g(x) .

- belongs to a nested hierarchy of model families

- is mostly continuous and differentiable

- is chosen according to the a priori information we have
about g(x) (e.g., gray box modeling), model
complexity (linear families) or universal function
approximation ability.

- Not rarely it is linear

- It can also have dynamics (e.g. AR, ARX, recurrent
networks)
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| The statistical learning framework

Structural risk

/L )) Px.ydxy

6° = argming.g V(0)
Empirical risk

Ww(8) =% Y L(vi.f(6.x:))

A

6 = argming_g Vn(0)
Learning procedure

avN(e.zN)|
06 ¥

0ir1 =6;—n
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| Inherent, approximation and estimation risks

V(0)=(V(0)—V(8°))+(V(6°) - Vi) + V.

estimatio approximation inheren
n risk risk t risk

« The inherent risk depends only on the structure of the
learning problem and, for this reason, can be reduced
only by improving the problem itself

* The approximation risk depends on how close the model
family (also named hypothesis space) is to the process
generating the data

* The estimation risk depends on the abiljty of the learning
algorithm to select a parameter vector 6 close to 6°
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N Approximation and estimation risks

al Model
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N Approximation and estimation risks

al Model
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Choosing a universal function approximator

Not rarely f(6,x) is chosen as a feedforward neural
network

Xi
f(6,x)
e R “"'-
Inputs EET ey Output
% ",?\‘?é\%":“ — P

£ A \ XN
AR R

!
i
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Choosing an universal function approximator

And the function implemented by a neuron is

,1
1 p W

Activation function
(more on this later)

I I

Inputs —

Output

The activation function can be
* Ahard limiter function

« A sigmodal-like function

« Alinear one (output layer)
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S _

Quality assessment of the solution

«How good is your ‘good’?»
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|Assessing the performance (1)

= Apparent Error Rate (AER),or resubstitution: The whole
set Zy is used both to infer the model and to estimate its
error

= Sample Partitioning (SP): Sp and Sg are obtained by
randomly splitting Zy in two disjoint subsets. Sy is used to
estimate the model and Sg to estimate its accuracy.

= [eaving-One-Out (LOO): Sg contains one pattern in Zy,
and Sp contains the remaining n — 1 patterns. The pro-
cedure is iterated n times by holding out each pattern in
Zy, and the resulting n estimates are averaged.
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|Assessing the performance (2)

= w-fold Crossvalidation (wCV): Zy is randomly split into
w disjoint subsets of equal size. For each subset the
re- maining w — 1 subsets are merged to form Sy and
the reserved subset is used as S¢ . The resulting w
estimates are averaged. This procedure can be
iterated and the results averaged when w < n in order
to reduce the random resampling variance. This
estimate is a generalization of LOO.
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An example: Binomial law confidence interval
|

for the classifier accuracy
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| B
|But

... what about the confidence
of an estimator?

- Bootstrap
- Bag of little bootstrap
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Quality assessment

|
Consider a data set Z, obtained by extracting n 1.1.d. samples xi,..... X, from random
variable x defined over X, i.e., Z, = {x;...,x,} and construct the estimator @, =

®(Z,). We are interested in providing an indication of the quality { of &,, e.g., we
wish to provide a confidence interval for &,,.

Clearly, the i1deal framework would recommend to carry out the following pro-
cedure

1. Extract m independent data sets of cardinality n from X so as to generate datasets
Zl Zm.
ny* - n-: _ _
2. Evaluate, in correspondence of the generic i-th data set Z, the estimator &, =

®(Z!). Repeat this procedure for all i = 1,...,m.;
Estimate the quality £ (@, ,.... ;") of the estimator &, based on the m realiza-

tions ) =Pd(Z),i=1...., m.

(9
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The bootstrap

Unfortunately, the above framework 1s mostly theoretical: if we have m indepen-
dent datasets Z,, we should use all nm data to provide a better estimate. This means
that in practical applications we have only a dataset but, at the same time, we are
interested in evaluating the quality ¢ of the estimator &,,.

= In the bootstrap method data sets 7/ ; — |
extracted with replacement from Z,

Algorithm 15: The bootstrap algorithm

1=0;

while i < m do
Extract n samples with replacement from Z,, and insert them in Z},;
Compute @) = P (Z}):
1=1+1:

end

Evaluate the assessment { (@], ..., @™) of the quality of the estimator @,,.
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The bag of little bootstraps method

= BLB shows to be accurate and appears to over-perform all
other bootstrap methods in terms of computational
complexity, hence becoming a very appealing method for
Big Data

Algorithm 16: The Bag of Little Bootstraps algorithm

n' =n";

1=0:

while i < m do
Extract n’ samples without replacement from Z, and insert them in Z"'I,:
ji=1
while j < r do

Extract n samples with replacement from Z, and insert them in Z; i

Compute <I>,’;_j = <P(Z,",_j)1

=)+l
end e.g., y=0.6
Evaluate §; = C (q),';_l st ~q);';.r)1
1=1+1;

end
- o : m ¢
Evaluate the assessment C for of the quality of the estimator @, as { = ==1>-.




Let’s play with MATLAB

= Download the examples related to Lecture 3 — Part 2

= |nthe ZIP file:
- Example 3 2 A.m
- Linear dataset, linear model
Example 3 2 B.m
- Linear dataset, nonlinear model
- Example 3_ 2 C.m
- Nonlinear dataset, linear model
- Example 3 2 D.m
- Nonlinear dataset, nonlinear model
- Example 3 2 E.m
- Different number of hidden units
- Example 3 2 F.m
- Classification and Apparent Error Rate
- Example 3 2 G.m
- Classification and Sample Partitioning
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