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Problem Complexity and Complexity
Reduction

«All problems are equal but some problems
are more equal than others»
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= The computational complexity theory studies the intrinsic
difficulty associated with the solution of a computable
problem.

= The complexity of an algorithm is generally evaluated as
the time execution and memory resources required by an
abstract machine to execute it.

= example

Algorithm 1: Algorithm A: a simple algorithm computing the scalar product
between two vectors
scalar_product = 0;
i=0;
assign memory to vectors x and y and populate the content;
while i < n do
scalar_product = scalar_product + x[i]y[i]:
i=1+1;
end
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= Memory complexity: M(A)=2n+2
= Computational complexity: C(A) = (2n+2)T,+ (n+ )T, +n(2T: + T.)
= Big Oh notation:
-O(k™") < O(H_k) < O(n_l) <0(1) < -
< ---0(logn) < O(n) < O(nk) <OK") < -

Algorithm 2: Algorithm B: a sequential scalar product computation
scalar_product = 0;
1=0;
assign memory to scalars x and y;
while i < n do
input x and y;
scalar_product = scalar_product + xy;
1 =i+1;
end
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[ D
| P, NP-Complete and NP-Hard problems

= We say that a problem A belongs to class P if its
computational time complexity is polynomial O(n*) with
constant k. The problem is “tractable” or “easily
solvable”...

- Sequential and binary search
- Bubblesort, quicksort, mergesort

= Some problems are more difficult (their complexity is not
polynomial) but it is «easy» to verify if a candidate solution
solves the problem or not.

= NP (nondeterministic polynomial time) is the class of
problems for which, given a candidate solution we can

verify in polynomial time if a solution solves the problem or
not.
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-
J_‘IZ, NP-Complete and NP-Hard problems
lassic example: the sum of subsets
= (Given a numeric set,

{1,5,9, -4, 12, 9}

- Determine the subset whose sum is equal to a given
value, say O.

- How many subsets should | generate and consider?
= Then, the problem is not P. However, given the subsets

{-1, 5, -4} or {-1, 5, -4, 12, 9} it is «easy» to verify
whether they satisfy the problem or not

- The problem is NP: a solution is easily verifiable but
the problem is not easily solvable
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| P, NP-Complete and NP-Hard problems

* Is P=NP ?

- If the answer is «yes» then problems that are easily
verifiable are also easily solvable. If not, some
problems are more complex than others...

= NP-complete problems are the hardest problems in the
NP classes. Even though we can verify in polytime if a
given solution belongs to the class determination of a

solution is a difficult task.
- Traveling salesman problem

= |t is believed by many scholars that P#ZNP (but others
believe that P=NP)...
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| P, NP-Complete and NP-Hard problems

= NP-hard: A problem H is said to be NP-hard if and only if
there exists a NP-complete problem L that is reducible to
H in polynomial time. In other words, problem L can be
solved in polynomial time by a machine which provides an

oracle for H.

= A NP-hard problem does not need to have solutions
verifiable in polynomial time and is, at least, as difficult as

a NP-complete one.
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| P, NP-Complete and NP-Hard problems

= The sum of subsets is a NP-hard problem

= Example: Given function u(y)<€[0.1],y e¥ C R
and valuey<0,1] does inequality «(y)<y hold for any
value v ¥ and function u?

= The problem is intractable for a generic u function since
we should query the Oracle for each input ; and ask the

question: «is u(y; ) below y?». Even in the case the Oracle
provides a quick answer the number of queries is not
polynomial for a continuous space.
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P, NP, NP Complete, NP Hard

If P=NP

Problem complexity

v

If P# NP

Problem complexity

A 4
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BT
| A deterministic vs. a probabilistic approach

= |s there any way to manage difficult problems?
= There are two main strategies:

- You design ad-hoc heuristics aiming at solving the
problem.

- You accept that the solution is «mostly effective»,
namely the solution you have found solves the problem
In probability

= The second approach has relevant implications worth
further investigation

* |n both cases we should ask ourselves how good the
solution is...
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| A deterministic vs. a probabilistic approach

= |et's elaborate on the second strategy, i.e., we accept the
problem to be solved in probabilistic terms and not
pretend a deterministically correct solution.

= We obtain the the class of Randomized Polynomial time -
RP- problems

= Example: Given function u(y)e 0,1,y e ¥ Cc R
and value, < 1o,) does inequality «(y)<y hold for any
value y € forany function u in probability?

= |fyis given we have a performance verification problem

= |fyis not given and needs to be estimated we have a
verification problem
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Monte Carlo and Randomized
Algorithms

«Go ahead sampling and you will catch
something»
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| Monte Carlo

= Monte Carlo is a set of methods for addressing problems
which can hardly be solved analytically for the
mathematical complexity of the involved functions

= MC methods are based on «randomization»

= |magine that we wish to estimate
21

If Pr is the probability of extracting a point in
C C then m=4Pr,
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| Estimating 1 with Monte Carlo

= Estract n samples from the square and count those falling
Inside the circle

e
= How to generate 7"~ 7, ?

= Consider the indicator function I
. [lifs;ecC
k“”‘{Oﬁggc

= Evaluate | =

Pn = - Y Ic(si)

i=1

And 4y
fon=4pn =Y Ic(si
! Pn - ,:21 C(SI)

= How good is the estimate?
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How good is the estimate?

= Weak law of large numbers

Let x € D be a continuous scalar random variable of finite expectation u and finite
variance 6 and xi . - - - ,x, a set of n independent and identically distributed samples
drawn from D (e.g., D = R) according to the continuous probability density function
fp. Generate the empirical mean fI, = - Y, x;. Then, for any € € D, the weak law

11 =
of large numbers guarantees that

lim Pr(|i, —u|>e¢)=0.

n——+oo

= How many samples n do we need to control the error?
Well, it is application dependent and, as such, of little
use...
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How good is the estimate?

= Strong law of large numbers

Let x € D be a continuous random scalar variable of finite expectation u and finite
variance 62 and x; ,--- ,x, a set of n independent and identically distributed samples
drawn from D (e.g.. D = R) according to the continuous probability density func-
tion fp. Generate the empirical mean [, = ﬁZ?:I x;. Then, the strong law of large
numbers guarantees that relationship

im [, =
n—s—-co “” }'J.

holds with probability one.

= How many samples n do we need to control the error?
Well, it is application dependent and, as such, of little
use...
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| Can | always use these laws?
|

= Yes,when assumptions hold. There are cases where they
do not, e.g., the Cauchy density

0.6}
0.5} — 2y =0, y=2 1
l < 0.4f

—

T DA

= Even though the function looks harmless its expectation
and variance do not exist, e.g., the espected value

—+00 X !
(X
/_m a(1+:2)

= Bring home message: what appears to be intuitive does
not necessarily need to be true...
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Summing up: Monte Carlo

Algorithm 3: The Monte Carlo algorithm

[- Identify the input space D of the algorithm and a random variable s, with probability density
function fy over D;

2-  Extract n samples §, = {.s] e ,5',,} from D according to f;;

3- Evaluate the algorithm on §,;;

4-  Generate an estimate of the algorithm output.

= The input is modeled as a random variable to which is
assigned a probability density function

= |f a pdf is not available a uniform one can be considered
for its worst case property

= Hard to define n for a given problem
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Randomized algorithms

= Randomized algorithms are algorithms that, by sampling
from a space according to a pdf provide results valid in
probability

= Bounds on n can be given

Algorithm S: The algorithm behind randomized algorithms

1- Transform the deterministic problem into a probabilistic problem;

2- Identify the input space ¥ of the algorithm and define a random variable y, with
probability density function f,, over ¥;

3- Identify the accuracy and the confidence levels and, then, the number of samples n required
by the randomization process;

4- Draw n samples S, = {sy.---.s,} from ¥ according to fy:

5- Evaluate the algorithm on samples in S,,;

6- Provide the probabilistic outcome of the algorithm.
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Lebesgue measurability

= Definition:
We say that a generic function u(y).y € ¥ C R' is Lebesgue measurable with re-
spect to ¥ when its generic step-function approximation Sy obtained by partitioning
W in N arbitrary domains grants that

lim Sy = u(y)

N —oo0

holds on set ¥ — Q, Q C R/ being a null measure set [20].

= No functions generated by a finite-step, finite-time
algorithm, such as any engineering-related mathematical
computations, can be Lebesgue nonmeasurable!.
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verification problem

| Example: The Algorithm performance ——

= The problem represents an interesting example of
constraint satisfaction level. Clearly, the problem is NP-
hard if we consider a generic performance function.

= Consider a given scalar y and performance function u().
Ask whether

u(y) <yvyeW

» |s satisfied or not. We might even ask at which level the
inequality is satisfied, i.e., compute
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| The Algorithm performance verification problem

= Define
fu(y;)<yqfe'fffw(.‘lf)dllf
= — = Pr <7v).VyeV¥
p(y) = =y (u(y) <7).Vy
= Note that
u(y) <y

= |s associated with the Bernoulli variable

i <
we‘P:l(H(Vf)SV):{O;fzgul/jggi

= By extracting n sampling, generate

pn(Y) = % il(”(l/fi) <7
=1

- I POLITECNICO DI MILANO




[ D
| The Algorithm performance verification problem

= |t can be proved that

Pr(|pn(y)—p(y)|<€)>1-0

= holds for any accuracy and confidence level in (0;1)
provided that

samples are extracted

= The inequality is known as the Chernoff bound.
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The Algorithm performance verification problem

Algorithm 6: Randomized algorithms for the algorithm performance verifica-
tion problem: the given performance loss case y

The probabilistic problem requires evaluation of p(y) = Pr(u(y) < 7y) for a given %;
Identity the input space ¥ and a random variable y, with density function f,, over ¥;
Select accuracy € and confidence 0;

) =
Draw n > ﬁ In 5 samples gy, -+, y, from y;
Estimate

use po(7):

= Let’s identify an error bound for © with Chernoff
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Different Bounds

= The literature has presented different bounds, with the
Chernoff being the least expensive one

= The Bernoulli bound
- Consider the bernoullian variable x (Pr(x)=1is p)
- Evaluate
E,= ;,-_lei
- Andrecallthat E[E,] =p:. Then,

Inequality

Pr(|E, — ElEs)| <) > 1- 6

holds for any accuracy level € € (0, 1) and confidence 1 — 6,6 € (0, 1) provided
that at least n > ﬁz— independent and identically distributed samples are drawn.
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The Bernoulli bound
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Bernoulli vs Chernoff bounds

Bernoulli bound for & = 0.05
— = = Chernoff bound for & = 0.05
«++«+«+ Bernoulli bound for d = 0.2
----- Chernoff bound for 8 =0.2

10000

[+2]
=
=]
o

6000

The number of samples

1S
=]
(=]
o

2000

0.02 0.04 0.66 ;,-g: ;";E);ﬂ ot o014 o1 018 02
Accuracy
Bound |€ =0.05.6 =0.02|e =0.05.6 =0.01|e =0.02,0 =0.01|¢ =0.01.6 = 0.01
Bernoulli 5000 10000 62500 250000
Chernoft 922 1060 6623 26492
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The Algorithm verification problem

= We do not require anymore y to be fixed and explore the level
satisfaction space to generate a characteristic curve

Algorithm 7: Randomized algorithms for solving the algorithm verification
problem

1-  The probabilistic problem requires evaluation of p(y) = Pr(u(y) < y) for any y belonging
to a finite set of arbitrary y values;

2- Identify the input space ¥ and and a random variable y, whith density function fy over ¥,
3- Select accuracy € and confidence §;

4- TIdentify the interested performance level set I' = {y;,--- , % };

5-  pur(y) = verification-problem(‘P’, fy,. u(y),I".€,0);

6- use ppr(y)

function verification-problem(¥, fy . u(y).I",€,0)
2 4

Draw n > 38% In 5 samples yy,---, g, from y;

For each y € I estimate

| n oo .
= B0 <1 10 <1 a1}

n i—

Group all p,(y)s in vector p, ;
_ Return p,
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| From a deterministic to a probabilistic framework

= Consider a Lebesgue measurable u() function and consider
problem

Umax — MaXU ( ll/)
e

l.e.,
”(W) < Umnax \V/W c¥
A dual probabilistic problem can be formulated

Pr (”(W) > ﬁmu.x') <7

And recall we are only assuming u to be Lebesgue measurable
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From a deterministic to a probabilistic framework

Intuitively, we should sample the space and get the estimate
for the maximum

TA— ."}ax u( ;)
iI=1.....1

Both the weak and the strong laws of large numbers grant
the estimate to converge to the true value
weak law of large numbers

lim Pr(”mtu‘ — Umax :2 8) =0
Hn— =09
strong law of large numbers

hm Umax = Umax
n—s—-co

_ DI MILANO
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B O
From a deterministic to a probabilistic framework

Unfortunately, the required number of points scales
exponentially with the dimension of the search space.

To solve the problem we need to introduce a second level of
probability.
It can be proved that

Inequality

Pr(Pr(u(y) > fpay) <€)>1-0

holds for any accuracy level € € (0,1) and confidence 1 — 6.0 € (0, 1) provided
‘hat at least

Ino
> ,
H_ln(l—g) (4.10)

independent and identically distributed samples are drawn.
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From a deterministic to a probabilistic framework

uy) \

umax

< v 4 v

Fig. 4.8: The maximum estimated value for function u(y) is ... The probability
of having points u(y) > i, is associated with two supports ¥, ¥, for which

Pr(u(W)IWE'ﬁ > ﬁml’—l’f) <ég,Pr (R(W)IWE'FQ > ﬁﬂla.\.’) <&andsumeg +& <&
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