
Cognitive Cyber-physical Systems:
from theory to practice

A
dv

an
ce

d
Re

se
ar

ch Intelligent
Embedded
Systems

Ph.D. and Master Course
Proff. Cesare Alippi and Manuel Roveri

Politecnico di Milano, DEIB, Italy

Problem Complexity and Complexity
Reduction

«All problems are equal but some problems
are more equal than others»

 The computational complexity theory studies the intrinsic
difficulty associated with the solution of a computable
problem.

 The complexity of an algorithm is generally evaluated as
the time execution and memory resources required by an
abstract machine to execute it.

 example

 Memory complexity:

 Computational complexity:

 Big Oh notation:

P, NP-Complete and NP-Hard problems

 We say that a problem A belongs to class P if its
computational time complexity is polynomial O(nk) with
constant k. The problem is “tractable” or “easily
solvable”…

• Sequential and binary search

• Bubblesort, quicksort, mergesort

 Some problems are more difficult (their complexity is not
polynomial) but it is «easy» to verify if a candidate solution
solves the problem or not.

 NP (nondeterministic polynomial time) is the class of
problems for which, given a candidate solution we can
verify in polynomial time if a solution solves the problem or
not.

P, NP-Complete and NP-Hard problems
Classic example: the sum of subsets
 Given a numeric set,

{-1, 5, 9, -4, 12, 9}

• Determine the subset whose sum is equal to a given
value, say 0.

• How many subsets should I generate and consider?

 Then, the problem is not P. However, given the subsets

• {-1, 5, -4} or {-1, 5, -4, 12, 9} it is «easy» to verify
whether they satisfy the problem or not

• The problem is NP: a solution is easily verifiable but
the problem is not easily solvable

P, NP-Complete and NP-Hard problems

 Is P=NP ?

• If the answer is «yes» then problems that are easily
verifiable are also easily solvable. If not, some
problems are more complex than others…

 NP-complete problems are the hardest problems in the
NP classes. Even though we can verify in polytime if a
given solution belongs to the class determination of a
solution is a difficult task.

• Traveling salesman problem

 It is believed by many scholars that P≠NP (but others
believe that P=NP)…

P, NP-Complete and NP-Hard problems

 NP-hard: A problem H is said to be NP-hard if and only if
there exists a NP-complete problem L that is reducible to
H in polynomial time. In other words, problem L can be
solved in polynomial time by a machine which provides an
oracle for H.

 A NP-hard problem does not need to have solutions
verifiable in polynomial time and is, at least, as difficult as
a NP-complete one.

P, NP-Complete and NP-Hard problems

 The sum of subsets is a NP-hard problem

 Example: Given function
and value does inequality hold for any
value and function u?

 The problem is intractable for a generic u function since
we should query the Oracle for each input ψi and ask the
question: «is u(ψi) below ». Even in the case the Oracle
provides a quick answer the number of queries is not
polynomial for a continuous space.

P, NP, NP Complete, NP Hard

If P=NP

If P≠ NP

A deterministic vs. a probabilistic approach

 Is there any way to manage difficult problems?

 There are two main strategies:

• You design ad-hoc heuristics aiming at solving the
problem.

• You accept that the solution is «mostly effective»,
namely the solution you have found solves the problem
in probability

 The second approach has relevant implications worth
further investigation

 In both cases we should ask ourselves how good the
solution is…

A deterministic vs. a probabilistic approach

 Let’s elaborate on the second strategy, i.e., we accept the
problem to be solved in probabilistic terms and not
pretend a deterministically correct solution.

 We obtain the the class of Randomized Polynomial time -
RP- problems

 Example: Given function
and value does inequality hold for any
value for any function u in probability?

 If  is given we have a performance verification problem

 If  is not given and needs to be estimated we have a
verification problem

Monte Carlo and Randomized
Algorithms

«Go ahead sampling and you will catch
something»

Monte Carlo

 Monte Carlo is a set of methods for addressing problems
which can hardly be solved analytically for the
mathematical complexity of the involved functions

 MC methods are based on «randomization»

 Imagine that we wish to estimate π

If PrC is the probability of extracting a point in
C then π=4PrC

Estimating π with Monte Carlo
 Estract n samples from the square and count those falling

inside the circle

 How to generate ?

 Consider the indicator function IC

 Evaluate

And

 How good is the estimate?

How good is the estimate?

 Weak law of large numbers

 How many samples n do we need to control the error?
Well, it is application dependent and, as such, of little
use…

How good is the estimate?

 Strong law of large numbers

 How many samples n do we need to control the error?
Well, it is application dependent and, as such, of little
use…

Can I always use these laws?

 Yes,when assumptions hold. There are cases where they
do not, e.g., the Cauchy density

 Even though the function looks harmless its expectation
and variance do not exist, e.g., the espected value

 Bring home message: what appears to be intuitive does
not necessarily need to be true…

Summing up: Monte Carlo

 The input is modeled as a random variable to which is
assigned a probability density function

 If a pdf is not available a uniform one can be considered
for its worst case property

 Hard to define n for a given problem

Randomized algorithms

 Randomized algorithms are algorithms that, by sampling
from a space according to a pdf provide results valid in
probability

 Bounds on n can be given

Lebesgue measurability

 Definition:

 No functions generated by a finite-step, finite-time
algorithm, such as any engineering-related mathematical
computations, can be Lebesgue nonmeasurable!.

Example: The Algorithm performance
verification problem

 The problem represents an interesting example of
constraint satisfaction level. Clearly, the problem is NP-
hard if we consider a generic performance function.

 Consider a given scalar  and performance function u().
Ask whether

 is satisfied or not. We might even ask at which level the
inequality is satisfied, i.e., compute

The Algorithm performance verification problem

 Define

 Note that

 is associated with the Bernoulli variable

 By extracting n sampling, generate

The Algorithm performance verification problem

 It can be proved that

 holds for any accuracy and confidence level in (0;1)
provided that

samples are extracted

 The inequality is known as the Chernoff bound.

The Algorithm performance verification problem

 Let’s identify an error bound for  with Chernoff

Different Bounds

 The literature has presented different bounds, with the
Chernoff being the least expensive one

 The Bernoulli bound

• Consider the bernoullian variable x (Pr(x)=1 is p)

• Evaluate

• And recall that . Then,

The Bernoulli bound

Bernoulli vs Chernoff bounds

The Algorithm verification problem

 We do not require anymore  to be fixed and explore the level
satisfaction space to generate a characteristic curve

From a deterministic to a probabilistic framework

 Consider a Lebesgue measurable u() function and consider
problem

i.e.,

A dual probabilistic problem can be formulated

And recall we are only assuming u to be Lebesgue measurable

From a deterministic to a probabilistic framework

Intuitively, we should sample the space and get the estimate
for the maximum

Both the weak and the strong laws of large numbers grant
the estimate to converge to the true value

From a deterministic to a probabilistic framework

Unfortunately, the required number of points scales
exponentially with the dimension of the search space.

To solve the problem we need to introduce a second level of
probability.

It can be proved that

From a deterministic to a probabilistic framework

